We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Suppression of Tumor Growth Linked to Actions of the Ubiquitin System

By LabMedica International staff writers
Posted on 21 Apr 2015
Print article
Image: Senior author Dr. Aaron Ciechanover shared the 2004 Nobel Prize in chemistry for his work on the ubiquitin system (Photo courtesy of the Technion-Israel Institute of Technology).
Image: Senior author Dr. Aaron Ciechanover shared the 2004 Nobel Prize in chemistry for his work on the ubiquitin system (Photo courtesy of the Technion-Israel Institute of Technology).
Image: The dramatic effect of these proteins on cancer growth: above the two tumors in the foreground (the control group) are tumors that express high levels of the proteins KPC1 and p50 (Photo courtesy of the Technion-Israel Institute of Technology).
Image: The dramatic effect of these proteins on cancer growth: above the two tumors in the foreground (the control group) are tumors that express high levels of the proteins KPC1 and p50 (Photo courtesy of the Technion-Israel Institute of Technology).
Cancer researchers working with mouse xenograft and human cancer cell cultures have identified components of the ubiquitin system that are linked to certain cellular processes, which act to suppress malignant growth and protect healthy tissues.

Ubiquitin is a small protein that exists in all eukaryotic cells. It performs myriad functions through conjugation to a large range of target proteins. The ubiquitin protein itself consists of 76 amino acids and has a molecular mass of about 8.5 kDa. Key features include its C-terminal tail and the seven lysine residues. It is highly conserved among eukaryotic species with human and yeast ubiquitin sharing 96% sequence identity. Ubiquitination is an enzymatic, protein post-translational modification (PTM) process in which the carboxylic acid of the terminal glycine from the di-glycine motif in the activated ubiquitin forms an amide bond to the epsilon amine of the lysine in the modified protein.

Investigators at the Technion-Israel Institute of Technology (Haifa, Israel) have focused on the protein KPC1 (Kip1 ubiquitylation-promoting complex 1), the catalytic subunit of the ubiquitin ligase KPC, and in particular on its relation to p105, a long precursor of the key cell regulator NF-kappaB.

The NF-kappaB (nuclear factor kappa-light-chain-enhancer of activated B cells) family of transcription factors comprises five structurally related proteins that form homo- and hetero-dimers through their highly conserved DNA binding/dimerization Rel homology domain. Binding of NF-kappaB to IkappaB proteins maintains NF-kappaB in an inactive state. Activation of NF-kappaB in normal cells is inducible and is a tightly controlled event. Upon stimulation, IkappaBs are phosphorylated by the IkappaB kinase (IKK) complex (consisting of IKK1, IKK2, and NEMO proteins). IkappaB phosphorylation leads to its rapid proteolysis, thereby allowing NF-kappaB to function as a transcription factor.

The investigators reported in the April 9, 2015, issue of the journal CELL that KPC1 ubiquitinated p105, resulting in the shortened protein p50. Working with mouse xenograft and human cancer cell cultures, they showed that high levels of KPC1 and p50 correlated with inhibition of tumor growth. Furthermore, KPC1 and p50 levels were lower in tumors than in normal tissue.

While these findings are of considerable importance in understanding molecular pathways that suppress cancer formation, senior author Nobel prize laureate Dr. Aaron Ciechanover, professor of biochemistry at the Technion-Israel Institute of Technology said, "Many more years are required to establish the research and gain a solid understanding of the mechanisms behind the suppression of the tumors. The development of a drug based on this discovery is a possibility, although not a certainty, and the road to such a drug is long and far from simple."

Related Links:

Technion-Israel Institute of Technology


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.