We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Bacteriophage Therapy Eliminates Multidrug Resistant Bacterial Infections

By LabMedica International staff writers
Posted on 01 Mar 2015
Print article
Image: Bacteriophage EFDG1 visualized by transmission electron microscopy (TEM) at a magnification of 20,000–30,000 times. Note that some phages are still bound to remains of the dead bacteria (Photo courtesy of the Hebrew University of Jerusalem).
Image: Bacteriophage EFDG1 visualized by transmission electron microscopy (TEM) at a magnification of 20,000–30,000 times. Note that some phages are still bound to remains of the dead bacteria (Photo courtesy of the Hebrew University of Jerusalem).
Bacteriophage therapy has been shown to be an effective approach for treating infections caused by drug-resistant strains of the bacterium Enterococcus faecalis.

E. faecalis, a bacterium inhabiting the gastrointestinal tracts of humans, is an important pathogen found in many infections including endocarditis, urinary tract infection, meningitis, and persistent infections associated with root canal treatment failure. The difficulty in E. faecalis treatment has been attributed to the lack of anti-infective strategies to eradicate its biofilm and to the frequent emergence of multidrug resistant strains.

Investigators at the Hebrew University of Jerusalem (Israel) evaluated the possibility of treating E. faecalis infections with specific bacteriophages, viruses that infect and destroy bacteria. To this end, they isolated an anti-E. faecalis and E. faecium phage, from effluents obtained from a Jerusalem (Israel), sewage treatment facility.

The EFDG1phage was visualized by electron microscopy. EFDG1 DNA coding sequences and phylogeny were determined by whole genome sequencing, which revealed that it belonged to the Spounavirinae subfamily of the Myoviridae phages, which includes promising candidates for therapy against Gram positive pathogens. This analysis also showed that the EFDG1 genome did not contain apparent harmful genes.

EFDG1 antibacterial efficacy was evaluated in vitro against planktonic and biofilm cultures. Results published in the February 6, 2015, online edition of the journal Applied and Environmental Microbiology showed that the phage displayed effective lytic activity against various E. faecalis and E. faecium isolates, regardless of their antibiotic resistance profile. Additionally, EFDG1 efficiently prevented ex vivo E. faecalis root canal infection.

Senior author Dr. Ronen Hazan, professor of dental sciences at the Hebrew University of Jerusalem, said, “The idea of using phages as antibacterial drugs is not new. Phage therapy was first proposed at the start of the 20th century, but then abandoned for various reasons, including the striking success of chemical antibiotics. Now we stand on the verge of a new era with the limitations of synthetic antibiotics and the emergence of antibiotic-resistant strains of bacteria. Thus it is the right time to look again into what Mother Nature offers in the battle against bacteria. As this research shows, bacteriophages may prove an effective tool in the development of much-needed new antimicrobial drugs.”

Hebrew University of Jerusalem

Related Links:
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.