We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Nanoparticles Deliver Viral Gene That Activates Toxic Drug Inside Brain Cancer Cells

By LabMedica International staff writers
Posted on 17 Feb 2015
Print article
Image: Nanoparticles in low and high resolution micrographs (Photo courtesy of Green Laboratory, Johns Hopkins University).
Image: Nanoparticles in low and high resolution micrographs (Photo courtesy of Green Laboratory, Johns Hopkins University).
Cancer researchers have described a nanoparticle-based gene therapy system that inserted the gene for the enzyme herpes simplex virus type I thymidine kinase (HSVtk) into brain tumor (glioma) cells and rendered them highly sensitive to the chemotherapeutic agent ganciclovir.

Ganciclovir is a synthetic analogue of 2′-deoxy-guanosine. It is first phosphorylated to ganciclovir monophosphate by a viral kinase during infection. Subsequently, cellular kinases catalyze the formation of ganciclovir diphosphate and ganciclovir triphosphate, which is present in 10-fold greater concentrations in Cytomegalovirus (CMV) or herpes simplex virus (HSV)-infected cells than uninfected cells. Ganciclovir triphosphate is a competitive inhibitor of deoxyguanosine triphosphate (dGTP) incorporation into DNA and preferentially inhibits viral DNA polymerases more than cellular DNA polymerases. In addition, ganciclovir triphosphate serves as a poor substrate for chain elongation, thereby disrupting viral DNA synthesis by a second route. Use of ganciclovir for cancer treatment is restricted by a range of serious side effects. Common adverse drug reactions include: granulocytopenia, neutropenia, anemia, thrombocytopenia, fever, nausea, vomiting, dyspepsia, diarrhea, abdominal pain, raised liver enzymes, headache, confusion, hallucination, seizures, pain and phlebitis at injection site (due to high pH), sweating, rash, itch, increased serum creatinine and blood urea concentrations. Furthermore, ganciclovir is considered a potential human carcinogen, teratogen, and mutagen.

Investigators at Johns Hopkins University (Baltimore, MD, USA) devised a way to use a less toxic pro-drug form of ganciclovir (GCV) that would become activated by HSVtk enzyme action localized inside the cancer cells. To transport the HSVtk gene to tumor cells they fabricated nanoparticles from HSVtk DNA combined with the poly(beta-amino ester) (PBAE) polymer, poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-modified with 1-(3-aminopropyl)-4-methylpiperazine. The nanoparticles were 138 ± 4 nanometers in size and 13 ± 1 millivolts in zeta potential.

Results published in the February 2, 2015, online edition of the journal ACS Nano revealed that the HSVtk DNA-containing nanoparticles showed 100% cancer cell killing in vitro in two glioma cell lines when combined with GCV exposure, while control nanoparticles encoding an irrelevant gene maintained robust cell viability.

For in vivo evaluation, tumor-bearing rats were treated with PBAE/HSVtk infusion via convection-enhanced delivery (CED) in combination with systemic administration of GCV. Intracranial CED employed a pressure gradient to enhance diffusion throughout the tumor. Following a single CED infusion, labeled PBAE nanoparticles spread completely throughout the tumor, and the treated animals showed a significant benefit in survival.

"We evaluated the system in rats with glioma and found that by using a method called intracranial convection-enhanced delivery, our nanoparticles could penetrate completely throughout the tumor following a single injection," said senior author Dr. Jordan J. Green, associate professor of biomedical engineering and ophthalmology at Johns Hopkins University. "When combined with systemic administration of ganciclovir, rats with malignant glioma lived significantly longer than rats that did not receive this treatment. We will move forward by evaluating this technology in additional brain cancer animal models."

Related Links:

Johns Hopkins University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The fastGEN BCR::ABL1 Cancer kit offers a way to personalize treatment strategies for leukemia (Photo courtesy of BioVendor MDx)

First of Its Kind NGS Assay for Precise Detection of BCR::ABL1 Fusion Gene to Enable Personalized Leukemia Treatment

The BCR::ABL1 fusion gene plays a key role in the pathogenesis of several blood cancers, particularly chronic myeloid leukemia (CML). This gene results from a chromosomal translocation that causes constitutive... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)

New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

Many individuals have a fear of needles, making the experience of having blood drawn from their arm particularly distressing. An alternative method involves taking blood from the fingertip or earlobe,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.