We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Turning Antibodies into Precisely Tuned Nanobodies

By LabMedica International staff writers
Posted on 17 Nov 2014
Print article
Image: On target: When researchers introduced nanobodies they made to cells engineered to express a tagged version of a protein in skeletal fibers known as tubulin (red), the nanobodies latched on. The cells above have recently divided (Photo courtesy of Rockefeller University).
Image: On target: When researchers introduced nanobodies they made to cells engineered to express a tagged version of a protein in skeletal fibers known as tubulin (red), the nanobodies latched on. The cells above have recently divided (Photo courtesy of Rockefeller University).
New technology has the potential to create nanobodies making them much more accessible than antibodies for all sorts of research.

Antibodies control the process of recognizing and zooming in on molecular targets, are among the most useful tools in biology and medicine. Nanobodies can do the same functions, for instance, tagging molecules for research or flagging diseased cells for destruction. However, because of their comparative simplicity, nanobodies offer the enticing possibility of being much easier to make.

Regrettably, their potential has not been fully realized, because scientists have lacked an effective way of identifying the nanobodies most closely tuned to their targets. However, a new system, developed by researchers at Rockefeller University and their collaborators, and described November 2, 2014, in the journal Nature Methods, has the potential to make nanobodies dramatically more accessible for all kinds of research.

Antibodies are defensive proteins implemented by the immune system to identify and neutralize invaders. But their power can be harnessed in other ways as well, and they are used in biology and medicine for visualizing cellular processes, attacking diseased cells and delivering specific molecules to specific places. Similar to their larger cousins, nanobodies can also be used for these tasks, but their small size makes nanobodies much easier to grow in bacterial factories. They can also access hard to reach places that may be off limits to larger molecules.

“Nanobodies have tremendous potential as versatile and accessible alternatives to conventional antibodies, but unfortunately current techniques present a bottleneck to meeting the demand for them,” said study author Dr. Michael Rout, head of the laboratory of cellular and structural biology at Rockefeller University (New York, NY, USA). “We hope that our system will make high-affinity nanobodies more available, and open up many new possible uses for them.”

In their first research project, the scientists generated high-affinity antibodies, those that are capable of most precisely attaching to their targets, directed against two fluorescent proteins that biologists often use as markers to visualize activity within cells: green fluorescent protein (GFP) and mCherry. Their new system, similar to existing ones for generating antibodies, begins with an animal, in this case llamas housed in a facility in Massachusetts.

Llamas were chosen because the antibody variants they produce are easily modified to generate nanobodies, which are only one-tenth the weight of a regular antibody. The llamas were immunized with GFP and mCherry, triggering their immune systems to generate antibodies against these foreign proteins, known as antigens.

“The key was to figure out a relatively fast way of determining the genetic sequences of the antibodies that bind to the targets with the greatest affinity. Up until now obtaining these high-affinity sequences has been something of a holy grail,” said Brian Chait, professor and head of the laboratory of mass spectrometry and gaseous ion chemistry. “Once those sequences are obtained, it’s easy to engineer bacteria to mass produce the antibodies.”

The researchers began by generating antibody sequence databases from RNA isolated out of antibody-producing cells in the llamas’ bone marrow. Next, they captured the tightest binding GFP and mCherry antibodies from blood samples from the same llamas, and chemically cut these into smaller pieces, keeping only the antigen-binding section to create nanobodies.

The scientists then determined partial sequences of the amino acids that made up the protein of the nanobodies with a technique known as mass spectrometry. Using a computer algorithm called “llama magic,” developed by David Fenyö and Sarah Keegan of New York University School of Medicine, they matched up the composition of the highest affinity nanobodies with the original RNA sequences. With the sequences, they could engineer bacteria to mass produce the nanobodies before using them in their research.

Antibodies are frequently employed to isolate a specific structure within a cell so that scientists can remove and study it, and the investigators did just that with their new nanobodies. They purified various cellular structures tagged with GFP or mCherry, and also visualized these structures in situ.

In total, the technology generated 25 types of nanobodies capable of precisely targeting GFP and six for mCherry, a far more diverse set of high affinity nanobodies than is typically possible with traditional techniques. This profusion opens up new avenues for treatments. Scientists can choose only the best ones, eliminating nanobodies that by chance cross-react with other molecules, or string together two nanobodies that attach to different spots on the same target molecule to generate a super-high-affinity dimer, precisely as the researchers demonstrated for the GFP nanobodies. This super-high-affinity could be a powerful feature when delivering therapeutic or diagnostic molecules because it would lower the required dosage, and so reduce unwanted side effects. “Given that we can now readily identify suites of high affinity nanobodies, the future for them as research tools, diagnostics and therapeutics looks bright,” stated Dr. Rout.

Related Links:

Rockefeller University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.