We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Protein Protects Lung Tissues from Influenza Virus

By LabMedica International staff writers
Posted on 28 Jan 2014
Print article
Image: Lung tissue from cIAP2-deficient mice showing effects on epithelial cells of influenza infection (Photo courtesy of McGill University).
Image: Lung tissue from cIAP2-deficient mice showing effects on epithelial cells of influenza infection (Photo courtesy of McGill University).
Researchers studying how the body responds to influenza infection have found that the protein called "cellular inhibitor of apoptosis protein 2" (cIAP2) protects the lungs against pulmonary tissue necrosis during virus infection to promote host survival.

cIAP2 is a multifunctional protein that regulates not only caspases and apoptosis, but also modulates inflammatory signaling and immunity, mitogenic kinase signaling, and in cancer cells, cell proliferation, cell invasion, and metastasis. It acts as an E3 ubiquitin- protein ligase regulating NF-kappa-B signaling, and regulates both canonical and non-canonical NF-kappa-B signaling. The target proteins for its E3 ubiquitin-protein ligase activity include RIPK1, RIPK2, RIPK3, RIPK4, CASP3, CASP7, CASP8, TRAF1, and BCL10.

In order to study the role of cIAP2 in H1N1type A influenza, investigators at McGill University (Montreal, Canada) genetically engineered a line of mice to lack the gene for this protein.

They reported in the January 15, 2014, issue of the journal Cell Host & Microbe that mice deficient in cIAP2 exhibited increased susceptibility and mortality to influenza A virus infection. The lethality was not due to impaired antiviral immune functions, but rather because of death-receptor-induced programmed necrosis of airway epithelial cells that led to severe bronchiole epithelial degeneration, despite control of viral replication. Drugs that blocked RIPK1 or genetic deletion of RIPK3, both kinases involved in programmed necrosis, rescued cIAP2-deficient mice from influenza-induced lethality. Genetic deletion of the death receptor agonists Fas ligand or TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) also reversed the susceptibility of cIAP2-deficient mice.

These results indicated that lung tissues were protected from the H1N1 influenza virus by cIAP2 inhibition of RIPK3-mediated programmed necrosis rather than through control of the virus by the immune system.

“It is a discovery that offers exciting new avenues for controlling influenza, since until now attempts to target the virus itself have proven challenging, especially in the face of emerging new strains of the virus,” said senior author Dr. Maya Saleh, associate professor of medicine and biochemistry at McGill University. “The results from our study now suggest that one effective way of countering influenza infections may instead be offered by enhancing the body’s resistance to the virus.”

Related Links:

McGill University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.