We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Blocking Mitochondrial Respiration in Melanoma Cells Prevents Development of Drug Resistance

By LabMedica International staff writers
Posted on 24 Jun 2013
Print article
Inhibition of oxidative phosphorylation (mitochondrial respiration) in a subpopulation of slow-growing, drug-resistant melanoma cells may augment traditional chemotherapy for treatment of this cancer, which is initially effective but eventually fails due to the development of drug resistance.

Despite success with BRAF-V600E inhibitors, therapeutic responses in patients with metastatic melanoma are short-lived because of the acquisition of drug resistance. The BRAF (v-Raf murine sarcoma viral oncogene homolog B1) gene encodes the protein serine/threonine-protein kinase B-Raf. Mutations in BRAF can cause disease by either congenital or acquired mutations. About half of melanomas express the BRAF-V600E mutation (at amino acid position number 600 on the B-Raf protein, the normal valine is replaced by glutamic acid). Inhibitors of B-Raf such as vemurafenib have been approved for the treatment of metastatic melanoma since August 2011.

Treatment of metastatic melanomas with various drugs, including cisplatin and vemurafenib, uniformly leads to enrichment of a population of slow-cycling, long-term tumor-maintaining melanoma cells that express the demethylase enzyme JARID1B (lysine-specific demethylase 5B, also known as histone demethylase). The slow-growing JARID1B cells represent only 1% to 5% of the cells in a tumor, yet readily convert into fast-growing metastatic melanoma cells following drug treatment and elimination of the bulk of the tumor.

Investigators at The Wistar Institute (Philadelphia, PA, USA) used advanced analysis techniques to perform proteome-profiling on melanoma JARID1B cells. Results published in the June 10, 2013, issue of the journal Cancer Cell revealed an upregulation in enzymes of mitochondrial oxidative-ATP-synthesis (oxidative phosphorylation) in this subpopulation. Despite the apparent slow replication of these cells, they were continually synthesizing glucose, which was then used to produce chemical energy. Inhibition of mitochondrial respiration with the diabetes drug phenformin blocked the conversion of the JARID1B subpopulation into the fast-growing form of melanoma cells and sensitized the melanoma to therapy, independent of genotype.

“We have found that the individual cells within melanoma tumors are not all identical, and tumors contain a subpopulation of cells that are inherently drug resistant, which accounts for the fact that advanced melanoma tumors return no matter how much the tumor is depleted,” said senior author Dr. Meenhard Herlyn, professor of molecular and cellular oncogenesis at The Wistar Institute. “We found that these slow-growing, drug-resistant cells are marked by a high rate of metabolism, which makes them susceptible to diabetes therapeutics. Our findings suggest a simple strategy to kill metastatic melanoma—regardless of cell type within the tumor—by combining anticancer drugs with a diabetes drug. The diabetes drug puts the brakes on the cells that would otherwise repopulate the tumor, thus allowing the anticancer drug to be more effective.”

Related Links:
The Wistar Institute

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The utilization of liquid biopsies in cancer research is a rapidly developing field (Photo courtesy of Lightspring/Shutterstock)

Blood Samples Enhance B-Cell Lymphoma Diagnostics and Prognosis

B-cell lymphoma is the predominant form of cancer affecting the lymphatic system, with about 30% of patients with aggressive forms of this disease experiencing relapse. Currently, the disease’s risk assessment... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Sampler device could revolutionize sample collection for diagnostic tests (Photo courtesy of ReadyGo Diagnostics)

First of Its Kind Universal Tool to Revolutionize Sample Collection for Diagnostic Tests

The COVID pandemic has dramatically reshaped the perception of diagnostics. Post the pandemic, a groundbreaking device that combines sample collection and processing into a single, easy-to-use disposable... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.