We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Stem Cell Development Could Lead to New Nanoscale Bone Repair Technology

By LabMedica International staff writers
Posted on 27 Feb 2013
Print article
Image: Stem cell breakthrough could lead to new bone repair therapies (Photo courtesy of the University of Southampton).
Image: Stem cell breakthrough could lead to new bone repair therapies (Photo courtesy of the University of Southampton).
British scientists have created a new application to help generate bone cells that could lead to groundbreaking bone repair therapies for individuals with bone fractures or those who need hip replacement surgery due to osteoporosis and osteoarthritis.

The research, performed by Dr. Emmajayne Kingham, from the University of Southampton (UK), working with colleagues the University of Glasgow (Scotland, UK), and published online January 30, 2013, in the journal Small, cultured human embryonic stem cells on to the surface of plastic materials and evaluated their capability to change.

Scientists were able to use the nanotopographic patterns on the biomedical plastic to manipulate human embryonic stem cells towards bone cells. This was accomplished without any chemical enhancement. The compounds, including the biomedical implantable substance polycarbonate plastic, provide an available and less expensive way of culturing human embryonic stem cells and presents new avenues for future medical research in this field.

Prof. Richard Oreffo, who led the University of Southampton team, explained, “To generate bone cells for regenerative medicine and further medical research remains a significant challenge. However, we have found that by harnessing surface technologies that allow the generation and ultimately scale up of human embryonic stem cells to skeletal cells, we can aid the tissue engineering process. This is very exciting. Our research may offer a whole new approach to skeletal regenerative medicine. The use of nanotopographical patterns could enable new cell culture designs, new device designs, and could herald the development of new bone repair therapies as well as further human stem cell research.”

This latest discovery expands on the close collaborative research earlier undertaken by the University of Southampton and the University of Glasgow. In 2011, the scientists effectively used plastic with embossed nanopatterns to cultivate and spread adult stem cells while maintaining their stem cell properties, a process that is less expensive and simpler to produce than earlier ways of manufacturing.

Dr. Nikolaj Gadegaard, Institute of Molecular, Cell and Systems Biology at the University of Glasgow, remarked, “Our previous collaborative research showed exciting new ways to control mesenchymal stem cell--stem cells from the bone marrow of adults—growth and differentiation on nanoscale patterns. This new Southampton-led discovery shows a totally different stem cell source, embryonic, also respond in a similar manner and this really starts to open this new field of discovery up. With more research impetus, it gives us the hope that we can go on to target a wider variety of degenerative conditions than we originally aspired to. This result is of fundamental significance.”

Related Links:
University of Southampton
University of Glasgow


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.