We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Loss of Specific MicroRNA Spurs Drug Resistance in Breast Cancer Cells

By LabMedica International staff writers
Posted on 17 May 2012
Print article
A study determined that development of resistance to the chemotherapeutic drug tamoxifen by breast tumors was due to the disappearance of a specific microRNA.

MicroRNAs are snippets of about 20 nucleotides that block gene expression by attaching to molecules of messenger RNA (mRNA) in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA.

In the study, investigators at the German Cancer Research Center (Heidelberg, Germany) related genome-wide miRNA microarray analyses of breast tumors to the appearance in the tumors of resistance to tazmoxifen.

They reported in the April 16, 2012, online edition of the journal Oncogene that the microRNA miRNA-375 was among the top downregulated miRNAs in resistant cells. Reexpression of miR-375 was sufficient to resensitize tumor cells to tamoxifen and partly reversed the epithelial–mesenchymal transition (EMT), which is characteristic of tumor cells.

A combination of mRNA profiling, bioinformatics analysis, and experimental validation identified the protein metadherin (MTDH) as a direct target of miR-375. Metadherin is an oncogenic protein that is normally blocked by miR-375. The importance of MTDH was confirmed in experiments with tumor cells that lacked the MTDH gene. In these tumors, even in the absence of miR-375, no resistance to tamoxifen arose.

“The analysis of microRNAs in breast cancer has put us on the track of metadherin. We will possibly be able to specifically influence the cancer-promoting properties of this protein in the future,” said coauthor Dr. Stefan Wiemann, associate professor of molecular genome analysis at the German Cancer Research Center. “Resistances to drugs are the main reason why therapies fail and disease progresses in many cancers. We want to understand what goes on in the cells when this happens so we can develop better therapies in the future.”

Related Links:

German Cancer Research Center


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A network of inflammatory molecules may act as biomarker for risk of future cerebrovascular disease (Photo courtesy of 123RF)

Simple Blood Test Could Enable First Quantitative Assessments for Future Cerebrovascular Disease

Cerebral small vessel disease is a common cause of stroke and cognitive decline, particularly in the elderly. Presently, assessing the risk for cerebral vascular diseases involves using a mix of diagnostic... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.