We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Biodegradable Nanoparticles Kill Drug Resistant Gram-Positive Bacteria

By LabMedica International staff writers
Posted on 20 Apr 2011
Print article
A recent paper described the development of biodegradable nanoparticles capable of killing Gram-positive bacteria including MRSA (Methicillin-resistant Staphylococcus aureus).

Investigators at the IBM Almaden Research Laboratory (San Jose, CA, USA) focused on types of nanoparticles that would be able to disrupt bacterial cell membranes. They reasoned that while it only requires one to two decades for microbes to develop resistance to traditional antibiotics that target a particular metabolic pathway inside the cell, drugs that compromise microbes' cell membranes are probably less likely to evoke resistance.

In the current study, they prepared polymer nanoparticles synthesized by metal-free organocatalytic ring-opening polymerization of functional cyclic carbonate. These nanoparticles were biodegradable and possessed a secondary structure that could insert into and disintegrate bacterial and fungal cell membranes.

Data obtained in collaboration with researchers at the Singapore Institute of Bioengineering and Nanotechnology (Singapore) was published in the April 3, 2011, online edition of the journal Nature Chemistry. Results showed that the nanoparticles disrupted microbial walls and membranes selectively and efficiently, thus inhibiting the growth of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), and fungi, without inducing significant hemolysis over a wide range of concentrations.

The biodegradable nanoparticles, which can be synthesized in large quantities and at low cost, represent a promising new class of antimicrobial drugs.

"We are trying to generate polymers that interact with microbes in a very different way than traditional antibiotics,” said contributing author Dr. James Hedrick, a materials scientist at the IBM Almaden Research Laboratory.

Related Links:
IBM Almaden Research Laboratory
Singapore Institute of Bioengineering and Nanotechnology

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk

A key interest area in cardiovascular research today is the impact of clonal hematopoiesis on cardiovascular diseases. Clonal hematopoiesis results from mutations in hematopoietic stem cells and may lead... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.