We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Scientists Create Blood Vessels, Capillaries for Lab-Grown Tissues

By LabMedica International staff writers
Posted on 07 Feb 2011
Print article
Researchers have overcome one of the major hurdles on the path to growing transplantable tissue in the lab: they have found a way to grow the blood vessels and capillaries needed to keep tissues alive.

The new research, conducted by investigators from Rice University (Houston, TX, USA) and Baylor College of Medicine (BCM; Houston, TX, USA), is available online, and it was published in the January 2011 issue of the journal Acta Biomaterialia. "The inability to grow blood-vessel network --or vasculature--in lab-grown tissues is the leading problem in regenerative medicine today,” said lead coauthor Dr. Jennifer West, department chair, and professor of bioengineering at Rice. "If you don't have blood supply, you cannot make a tissue structure that is thicker than a couple hundred microns.”

As its base material, a team of researchers led by Dr. West and BCM molecular physiologist Dr. Mary Dickinson chose polyethylene glycol (PEG), a nontoxic plastic that is widely used in medical devices and food. Building on 10 years of research in Dr. West's lab, the scientists modified the PEG to mimic the body's extracellular matrix--the network of proteins and polysaccharides that comprise a considerable portion of most tissues.

Drs. West, Dickinson, Rice graduate student Jennifer Saik, Rice, undergraduate Emily Watkins, and Rice-BCM graduate student Daniel Gould combined the modified PEG with two kinds of cells--both of which are needed for blood-vessel formation. Using light that locks the PEG polymer strands into a solid gel, they created soft hydrogels that contained living cells and growth factors. After that, they filmed the hydrogels for 72 hours. By tagging each type of cell with a different colored fluorescent marker, the scientists were able to see as the cells gradually formed capillaries throughout the soft, plastic gel.

To assess these new vascular networks, the researchers implanted the hydrogels into the corneas of mice, where no natural vasculature exists. After injecting a dye into the mice's bloodstream, the researchers confirmed normal blood flow in the newly grown capillaries.

Another major development, conducted by Dr. West and graduate student Joseph Hoffmann, in November 2010, involved the generation of a new technique called two-photon lithography, an ultrasensitive method of using light to create intricate three-dimensional (3D) patterns within the soft PEG hydrogels. West said the patterning technique allows the engineers to exert a fine level of control over where cells move and grow. In follow-up research, also in collaboration with the Dickinson lab at BCM, Dr. West and her colleagues plan to use the technique to grow blood vessels in predetermined patterns.

Related Links:
Rice University
Baylor College of Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.