We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Teratomas Offer Source for Rebuilding Damaged Tissues

By LabMedica International staff writers
Posted on 19 Jul 2018
Print article
Image: A micrograph of a teratoma showing tissue from all three germ layers: mesoderm (immature cartilage - left-upper), endoderm (gastrointestinal glands - center-bottom) and ectoderm (epidermis - right) (Photo courtesy of Wikimedia Commons).
Image: A micrograph of a teratoma showing tissue from all three germ layers: mesoderm (immature cartilage - left-upper), endoderm (gastrointestinal glands - center-bottom) and ectoderm (epidermis - right) (Photo courtesy of Wikimedia Commons).
Muscle stem cells, which were derived from benign teratoma tumors, were found to demonstrate exceptional potential as starting material for rebuilding and maintaining damaged muscle tissues.

Investigators at the University of Minnesota Medical School (Minneapolis and Duluth, USA) created teratomas using undifferentiated pluripotent cells injected into immunodeficient mice, and isolated muscle stem cells from them. Following purification by fluorescence-activated cell sorting (FACS) and transplantation into diseased muscles, mouse teratoma-derived myogenic progenitors demonstrated very high engraftment potential. As few as 40,000 cells could reconstitute about 80% of the tibialis anterior muscle volume.

Results published in the July 5, 2018, issue of the journal Cell Stem Cell revealed that newly generated fibers are innervated, expressed adult myosins, and ameliorated dystrophy-related force deficit and fatigability. Teratoma-derived myogenic progenitors also contributed quiescent PAX7+ muscle stem cells, enabling long-term maintenance of regenerated muscle and allowing muscle regeneration in response to subsequent injuries. Transcriptional profiling revealed that teratoma-derived myogenic progenitors underwent embryonic-to-adult maturation when they contributed to the stem cell compartment of regenerated muscle.

"The goal of this research was to seek in unexplored places a source of cells that, when transplanted, would rebuild skeletal muscle and demonstrate significant improvements in muscle strength and resilience," said senior author Dr. Michael Kyba, professor of pediatrics at the University of Minnesota Medical School.

In light of the ethical issues surrounding the source of human stem cells, teratomas are being looked at as an alternative source for research because they lack the potential to grow into functional human beings. Results of the current study suggest that teratomas are a rich and accessible source of potent transplantable skeletal muscle stem cells.

Related Links:
University of Minnesota Medical School

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
FOB+Transferrin+Calprotectin+Lactoferrin Test
CerTest FOB+Transferrin+Calprotectin+Lactoferrin Combo Test
New
C-Reactive Protein Assay
OneStep C-Reactive Protein (CRP) RapiCard InstaTest

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.