We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Finnish Study Describes Activators of SIRT6 Gene

By LabMedica International staff writers
Posted on 17 Apr 2018
Print article
A team of Finnish researchers conducted a study to evaluate the differences in chemical features between inhibitors and activators of the cancer-related SIRT6 gene.

SIRT6 (Sirtuin 6) is a chromatin-associated enzyme that is required for normal base excision repair of DNA damage in mammalian cells. Deficiency of SIRT6 in mice leads to abnormalities that overlap with aging-associated degenerative processes. SIRT6 also promotes the repair of DNA double-strand breaks by the process of non-homologous end joining.

Flavonoids are polyphenolic secondary metabolites synthesized by plants and fungi with various pharmacological effects. Due to their many classes of biological activity, they have been studied extensively in drug development. Flavonoids have been shown to modulate the activity of a NAD+-dependent histone deacetylase, SIRT6. Since SIRT6 has been implicated in longevity, metabolism, DNA-repair, and inflammatory response reduction, it is an interesting target in inflammatory and metabolic diseases as well as in cancer.

Investigators at the University of Eastern Finland (Kuopio, Finland) reported in the March 7, 2018, online edition of the journal Scientific Reports that flavonoids could alter SIRT6 activity in a structure dependent manner. Catechin derivatives with galloyl moiety displayed significant inhibition potency against SIRT6 at 10 microMolar concentration. The most potent SIRT6 activator, cyanidin, belonged to the family of anthocyanidins, and produced a 55-fold increase in SIRT6 activity compared to the three to 10-fold increase for the others. Cyanidin was also found to significantly increase SIRT6 expression in human colon adenocarcinoma Caco-2 cells. Cyanidin also decreased the expression of the TWIST1 and GLUT1 cancer promoter genes in Caco-2 cells, while increasing the expression of the tumor suppressor FOXO3 gene in the cells.

Results from docking studies indicated possible binding sites for SIRT6 inhibitors and activators. Inhibitors likely attached in a manner that could disturb NAD+ binding. The putative activator-binding site was found next to a loop near the acetylated peptide substrate-binding site. In some cases, the activators changed the conformation of this loop suggesting that it might play a role in SIRT6 activation.

"The most interesting results of our study relate to cyanidin, which is an anthocyanin found abundantly in wild bilberry, blackcurrant, and lingonberry," said first author Dr. Minna Rahnasto-Rilla, pharmacology researcher at the University of Eastern Finland.

Related Links:
University of Eastern Finland

New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
HbA1c Test
HbA1c Rapid Test
New
Benchtop Cooler
PCR-Cooler & PCR-Rack

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.