We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Prevention of ERK Nuclear Translocation Blocks Cancer Proliferation in Animal Models

By LabMedica International staff writers
Posted on 15 Apr 2015
Print article
Image: Cancer cells, left, were pretreated with a drug that blocks the ERK signal, and right, without the pretreatment. Top cells are untreated, while the bottom ones are stimulated (Photo courtesy of the Weizmann Institute of Science).
Image: Cancer cells, left, were pretreated with a drug that blocks the ERK signal, and right, without the pretreatment. Top cells are untreated, while the bottom ones are stimulated (Photo courtesy of the Weizmann Institute of Science).
A team of cell biologists has shown that the cancer promoting effects of ERK dysregulation can be blocked by low molecular weight drugs that prevent translocation of this kinase from the cells' cytoplasm into the nucleus.

ERK1 (insulin-stimulated MAP2 kinase) and ERK2 (mitogen-activated protein kinase 2 or MAP kinase 2) act as an integration point for multiple biochemical signals and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation, and development. The activation of this kinase requires its phosphorylation by upstream kinases. Upon activation, this kinase is transported to the nucleus of the stimulated cells, where it phosphorylates nuclear targets. Dysregulation of this pathway has been implicated in some 85% of all cancer types.

Investigators at the Weizmann Institute of Science (Rehovot, Israel) explored a novel approach to cancer therapy based on prevention of the nuclear translocation of ERK1/2, which was expected to inhibit proliferation, without affecting cytoplasm-induced cellular processes. To this end they developed a myristoylated phosphomimetic peptide, which blocked the interaction of the importin7 transport protein and ERK1/2, and consequently the nuclear translocation of the latter.

Results published in the March 30, 2015, online edition of the journal Nature Communications revealed that in culture, the peptide induced apoptosis of melanoma cells, inhibited the viability of other cancer cells, but had no effect on non-transformed, immortalized cells. Furthermore, it inhibited the viability of PLX4032 and U0126 drug resistant melanoma cells. In xenograft models, the peptide inhibited several cancers, and acted much better than PLX4032 in preventing melanoma recurrence.

"In some of the cancers, the molecule worked even better in the animal models than it did in culture. The cancers disappeared within days and did not return," said senior author Dr. Rony Seger, professor of biological regulation at the Weizmann Institute of Science. "In addition, the fact that the molecules do not destroy the ERK but only stop it from entering the nucleus may be good news for healthy cells. Every pathway is associated with a different disease. The trick is to find the molecules that can selectively target just one stage in the process."

Related Links:

Weizmann Institute of Science 


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
PSA Test
Humasis PSA Card
New
Amoebiasis Test
ELI.H.A Amoeba

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.