We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cheap, Paper-Based Testing Platform Could Transform Diagnostics

By LabMedica International staff writers
Posted on 16 Oct 2024

At-home diagnostic tests, such as pregnancy or COVID tests, utilize paper-based assay technology to identify the presence of target molecules. More...

Although these tests are simple and inexpensive, they primarily provide qualitative results, indicating whether a biomarker is present. In contrast, field-effect transistors (FETs), which were initially created for electronic devices, are capable of detecting the concentrations of biological molecules. Today, they serve as highly sensitive biosensors for real-time biomarker detection. Many experts believe that FETs represent the future of biosensing; however, their commercialization has been limited due to the specific testing conditions required. In a highly complex matrix like blood, FETs often struggle to detect signals from analytes. Researchers have now developed a new diagnostic test system that merges an FET with a cost-effective, paper-based diagnostic test. When paired with machine learning, this system evolves into a novel biosensor that could potentially revolutionize at-home testing and diagnostics.

Developed jointly by researchers at the University of Chicago Pritzker School of Molecular Engineering (PME, Chicago, Il, USA) and UCLA Samueli School of Engineering (Los Angeles, CA, USA), the new kind of testing system integrates an FET with a paper-based analytical cartridge, similar to the technology used in at-home pregnancy and COVID tests. This combination harnesses the high sensitivity of FETs along with the low-cost benefits of paper-based cartridges. The paper fluidic technology, particularly its porous sensing membrane, reduces the need for the complicated, controlled testing environments that FETs typically require. Additionally, it offers a low-cost basis for the system, as each cartridge costs approximately 15 cents.

The integration of deep-learning kinetic analysis further enhances the accuracy and precision of the testing results within the FET. To evaluate the system, the researchers programmed the device to measure cholesterol levels from anonymized, leftover human plasma samples. The study results published in ACS Nano indicate that across 30 blind tests, the system measured cholesterol levels with over 97% accuracy—well above the total allowable error of 10% stipulated by CLIA guidelines. The team also conducted a proof-of-concept experiment demonstrating that the device could accommodate immunoassays, which are widely used to quantify hormones, tumor markers, and cardiac biomarkers. The next steps involve developing the system for immunoassay testing, with the ultimate goal of showcasing its ability to detect multiple biomarkers from a single sample input.

“By addressing the limitations in each component and adding in machine learning, we have created a new testing platform that could diagnose disease, detect biomarkers, and monitor therapies at home,” said Hyun-June Jang, a postdoctoral fellow and co-lead author on the paper. “This technology has the potential to detect multiple biomarkers from a single drop of blood.”


New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Anti-Thyroid Peroxidase Assay
LIAISON Anti-TPO
New
Automated Biochemical Analyzer
iBC 900
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more

Pathology

view channel
These images illustrate how precision oncology Organ Chips recapitulate individual patients’ responses to chemotherapy (Photo courtesy of Wyss Institute at Harvard University)

Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response

Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.