We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
04 May 2021 - 07 May 2021
Virtual Venue

Smartphone Microscopic Method Detects Cryptosporidium and Giardia

By LabMedica International staff writers
Posted on 30 Sep 2020
Print article
Image: Cryptosporidium oocysts and the larger Giardia cysts stained by Crypto/Giardia IFA kit (Photo courtesy of Cellabs).
Image: Cryptosporidium oocysts and the larger Giardia cysts stained by Crypto/Giardia IFA kit (Photo courtesy of Cellabs).
Food and water-borne illness arising from the consumption of contaminated food and water are serious health hazards globally. Cryptosporidium and Giardia are the major food and water‒borne parasites. The infection occurs mainly by (oo)cyst phase of the parasites.

Several highly sensitive and specific methods have been described to detect Giardia cyst and Cryptosporidium oocyst in food, water, and fecal samples. Commonly used approaches are polymerase chain reaction, flow cytometry, and optical microscopic examination. However, these techniques need a good laboratory facility, well trained user and are expensive.

Scientists at the Kathmandu Institute of Applied Sciences (Kathmandu, Nepal) developed a smartphone based microscopic assay method to screen (oo)cysts of Cryptosporidium and Giardia contamination of vegetable and water samples. The method consisting of a ball lens of 1 mm diameter, white LED as illumination source and Lugols's iodine staining provided magnification and contrast capable of distinguishing (oo)cysts of Cryptosporidium and Giardia. The analytical performance of the method was tested by spike recovery studies.

Ten microliters of concentrated sample were stained with 10 μL of diluted Lugol's iodine (1:2 in water) and subsequently loaded into hemocytometer. The sample was incubated for six minutes. The (oo)cysts were screened and enumerated in four quadrants of the hemocytometer under smartphone microscope. The cysts on the same hemocytometer were simultaneously counted by Trinocular brightfield microscope (Amscope, Irvine, CA, USA). Triplicate measurement was made for each concentrated suspension. The spiked samples were also examined with a fluorescent microscope (Labomed Inc, Los Angeles, CA, USA).

The team tested the smartphone microscope system for detecting (oo)cysts on seven types of vegetable (n = 196) and river water (n = 18) samples. They reported that 42% vegetable and 39% water samples were found to be contaminated with Cryptosporidium oocyst. Similarly, 31% vegetable and 33% water samples were contaminated with Giardia cyst. The recovery of Giardia ranged from 10.2 ± 4.0% in cabbage to 37.6 ± 2.4% in water and recovery of Cryptosporidium ranged from 26.8 ± 10.3% in cabbage to 49.2 ± 10.9% in tomato using smartphone microscope measurement.

The authors concluded that the smartphone based microscopic assay can be a low-cost alternative for screening of (oo)cyst of Cryptosporidium and Giardia in resource limited settings. The approximate cost of the microscope (excluding the cost of smartphone) is ~ USD 15. This method also has the potential to be used in clinical settings. The study was published on September 8, 2020 in the journal PLOS Neglected Tropical Diseases.

Related Links:
Kathmandu Institute of Applied Sciences
Amscope
Labomed Inc


New
Gold Supplier
SARS-CoV-2 Antibody Test
SARS-CoV-2 UTAB FS
Gold Supplier
Influenza A&B Test
SGTi-flex Influenza A&B
New
Molecular Diagnostics Integrated System
SENTiNAT 200
Hematology Analyzer
DxH 560 AL

Print article
BIOHIT  Healthcare OY

Channels

Molecular Diagnostics

view channel
Image: Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis (Photo courtesy of Dr. Christopher Wiley)

Novel Lipid Biomarker Detects Senescent Cells

A recent paper identified a lipid biomarker indicative of cellular senescence and described a method to evaluate its effect on the molecular events that lead to senescence. Cellular senescence is a... Read more

Industry

view channel
Image: The Luminex Aries® System (Photo courtesy of Luminex Corporation)

DiaSorin to Acquire Luminex to Broaden Positioning in Molecular Diagnostics Space

DiaSorin S.p.A. (‎Saluggia‎, Italy) has announced that its Board of Directors has unanimously approved and signed a definitive merger agreement for DiaSorin to acquire Luminex Corporation (Austin, TX,... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.