We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Portable Blood Ammonia Detector Developed

By LabMedica International staff writers
Posted on 04 Aug 2020
Ammonia is a natural product of digestion that is usually processed into urea by the liver and passed out of the body in urine. More...
Too much ammonia in the blood can cause mental and physical dysfunction and is a concern for people with liver disease or genetic conditions that hinder ammonia metabolism.

Effective treatments exist, but preventing permanent neurological sequelae requires rapid, accurate, and serial measurements of blood ammonia. Standard methods require volumes of 1 to 3 mL, centrifugation to isolate plasma, and a turn-around time of two hours. Collection, handling, and processing requirements mean that community clinics, particularly those in low resource settings, cannot provide reliable measurements.

Biochemists at Stanford University (Stanford, CA, USA) developed a method to measure ammonia from small-volume whole blood samples in two minutes. The method alkalizes blood to release gas-phase ammonia for detection by a fuel cell. The device requires about one drop of blood, less than 1% of the blood for the standard test, and thus can be obtained with a small finger or earlobe prick. The device itself is about the size of a television remote and, as with a glucometer, the blood drops are dabbed onto a test strip that is inserted into one end.

While the sensor inside the device is very similar to existing ammonia sensors (used to detect toxic ammonia gas in industrial settings), the test strips are made from scratch. Blood applied to a small hole at one end of the strip zips through a microscopic channel and sinks into a paper-lined well at the opposite end, which is coated with an inexpensive chemical that liberates the ammonia from the sample. Inside the device, this well sits directly under the ammonia sensor. The device was tested on both adult and pediatric blood samples and showed a strong correlation with an academic clinical laboratory for plasma ammonia concentrations up to 500 μM (16 times higher than the upper limit of normal).

Natalia Gomez-Ospina, MD, PhD, an assistant professor of pediatrics and co-author of the paper, said, “I've spoken with families who have children with metabolic diseases about having this kind of device and it makes them emotional because, for them, the consequences of not getting ammonia checked accurately and quickly are so severe. For these families, it could be life-changing.” The study was published on June 15, 2020 in the journal ACS Sensors.

Related Links:
Stanford University


Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Capillary Blood Collection Tube
IMPROMINI M3
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.