We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Tool Beats Expert Pathologists in Predicting Breast Cancer Outcomes

By LabMedica International staff writers
Posted on 11 Dec 2023
Print article
Image: AI may spare breast cancer patients unnecessary treatments (Photo courtesy of 123RF)
Image: AI may spare breast cancer patients unnecessary treatments (Photo courtesy of 123RF)

Pathologists traditionally assess cancerous tissues in patients to guide treatment strategies. This evaluation, known as grading, examines the appearance of cancer cells and is crucial in determining a patient's treatment plan. This grading process, focused on the morphology of cancer cells, has been a standard practice for many years. Now, a study has found that a new artificial intelligence (AI) tool outperforms expert pathologists in predicting the progression of a patient's disease based on tissue evaluations.

Developed by researchers at Northwestern University (Evanston, IL, USA), this AI tool offers the potential to significantly alter the treatment path for breast cancer patients. The tool's ability to more accurately identify those patients currently categorized as high or intermediate risk but who will have a favorable long-term prognosis could lead to less aggressive chemotherapy treatments. This advancement is particularly significant given the adverse side effects associated with chemotherapy, such as nausea and potential heart damage. Previous studies have highlighted the role of non-cancerous cells, including immune cells and structural tissue cells, in cancer progression. This AI tool is pioneering in its comprehensive assessment of both cancerous and non-cancerous elements in invasive breast cancer.

To train this AI model, the researchers utilized a large-scale, international collaboration of medical students and pathologists. This network provided extensive human-generated annotations of cells and tissue structures within digital images of breast cancer tissues, collected through a website over several years. The AI system evaluates 26 different aspects of breast tissue, producing an overall prognostic score. The system also generates individual scores for the cancer, immune and stromal cells to explain the overall score to the pathologist. For example, in some patients, a favorable prognosis score may be due to properties of their immune cells, where for others it may be due to properties of their cancer cells. This information could be used by a patient’s care team in creating an individualized treatment plan.

Adoption of the new model could provide patients diagnosed with breast cancer with a more accurate estimate of the risk associated with their disease, empowering them to make informed decisions about their clinical care, according to the researchers. Additionally, this model may help in assessing therapeutic response, allowing treatment to be escalated or de-escalated depending on how the microscopic appearance of the tissue changes over time. For example, the tool may be able to recognize the effectiveness of a patient’s immune system in targeting cancer during chemotherapy, which could be used to reduce the duration or intensity of chemotherapy. Next, the scientists will evaluate this model prospectively to validate it for clinical use. The scientists also are working to develop models for more specific types of breast cancers like triple-negative or HER2-positive. Invasive breast cancer encompasses several different categories, and the important tissue patterns may vary across these categories.

“Our study demonstrates the importance of non-cancer components in determining a patient’s outcome,” said corresponding study author Lee Cooper, associate professor of pathology at Northwestern University Feinberg School of Medicine. “The importance of these elements was known from biological studies, but this knowledge has not been effectively translated to clinical use.”

“These patterns are challenging for a pathologist to evaluate as they can be difficult for the human eye to categorize reliably,” said Cooper, also a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University. “The AI model measures these patterns and presents information to the pathologist in a way that makes the AI decision-making process clear to the pathologist.”

Related Links:
Northwestern University

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
EBV DNA Quantitative Fluorescence Diagnostic Kit
S3015E EBV
New
Clostridium Difficile Assay
Revogene C. Difficile

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The LIAISON PLEX Gram-Negative Blood Culture Assay runs on the on the LIAISON PLEX instrument (Photo courtesy of Diasorin)

Molecular Multiplexing Panel for Blood Culture Identification Enables Targeted Treatment Decisions

Each year, approximately 250,000 patients in the US are diagnosed with bloodstream infections (BSIs). Sepsis resulting from BSIs has an average mortality rate of 16-40%, and any delays in initiating appropriate... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image

Revolutionary Molecular Culture ID Technology to Transform Bacterial Diagnostics

Bacterial infections pose a major threat to public health, contributing to one in five deaths worldwide. Current diagnostic methods often take several days to provide results, which can delay appropriate... Read more

Industry

view channel
Image: International expert meeting for trends and innovations in laboratory medicine - the MEDICA LABMED FORUM at MEDICA (Photo courtesy of Constanze Tillmann/Messe Düsseldorf)

MEDICA LABMED FORUM 2024: International Experts Meet to Discuss Trending Topics in Laboratory Medicine

At MEDICA (Düsseldorf, Germany), the world’s premier trade fair for the healthcare industry and medical technology sector, this year’s event (November 11–14) will focus on the most exciting medical advancements.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.