We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Rapid-Live Screening Microscopy Technique Enables Early Detection of Treatment-Resistant Cancer Cells

By LabMedica International staff writers
Posted on 27 Sep 2023
Print article
Image: A new microscopy method detects treatment-resistant cancer cells early (Photo courtesy of 123RF)
Image: A new microscopy method detects treatment-resistant cancer cells early (Photo courtesy of 123RF)

Chemotherapy serves as an effective tool in the fight against cancer, yet some cancer cells can evade treatment by going into a dormant state known as senescence. These so-called therapy-induced senescent (TIS) cells can become not just resistant to treatment but also potentially more harmful, even metastasizing. Early identification of TIS cells could be crucial in stopping their progression, but current detection techniques aren't quick or accurate enough. Now, new advanced microscopy techniques may offer a solution, allowing healthcare providers to identify these cells early on and adapt treatment plans accordingly.

A team of researchers at Johns Hopkins University (Baltimore, MD, USA) used a combination of three state-of-the-art, label-free microscopy methods—coherent Raman scattering, multi-photon absorption, and optical diffraction tomography—to examine TIS cells in their natural setting. This approach is unlike traditional methods and gave the scientists the ability to look at the cells' form, internal structure, and both physical and chemical properties during their entire life cycle.

The use of these advanced microscopy methods uncovered significant transformations within the TIS cells. For instance, within a day, the cells' mitochondria—the "energy factories" inside them—had repositioned themselves. By the 72-hour mark, the cells had started to excessively produce fatty molecules known as lipids and had become flatter and larger. This in-depth analysis helped the researchers establish a detailed timeline of these cellular changes. According to the team, their novel rapid-live screening microscopy methods offer great potential for advancing cancer research.

"Our work demonstrates the potential to transform anticancer treatment research," said Ishan Barman, an associate professor of mechanical engineering at Johns Hopkins Whiting School of Engineering. "Integrating these microscopy methods could help clinicians make more informed, timely treatment decisions."

Related Links:
Johns Hopkins University 

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Sexually Transmitted Diseases Test
STD Panel Strip
New
Thyroid Stimulating Hormone Assay
Neonatal TSH ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The LIAISON PLEX Gram-Negative Blood Culture Assay runs on the on the LIAISON PLEX instrument (Photo courtesy of Diasorin)

Molecular Multiplexing Panel for Blood Culture Identification Enables Targeted Treatment Decisions

Each year, approximately 250,000 patients in the US are diagnosed with bloodstream infections (BSIs). Sepsis resulting from BSIs has an average mortality rate of 16-40%, and any delays in initiating appropriate... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image

Revolutionary Molecular Culture ID Technology to Transform Bacterial Diagnostics

Bacterial infections pose a major threat to public health, contributing to one in five deaths worldwide. Current diagnostic methods often take several days to provide results, which can delay appropriate... Read more

Industry

view channel
Image: International expert meeting for trends and innovations in laboratory medicine - the MEDICA LABMED FORUM at MEDICA (Photo courtesy of Constanze Tillmann/Messe Düsseldorf)

MEDICA LABMED FORUM 2024: International Experts Meet to Discuss Trending Topics in Laboratory Medicine

At MEDICA (Düsseldorf, Germany), the world’s premier trade fair for the healthcare industry and medical technology sector, this year’s event (November 11–14) will focus on the most exciting medical advancements.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.