We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Handheld Pen Enables Real-Time Tissue Identification during Surgery

By LabMedica International staff writers
Posted on 30 Aug 2023
Print article
Image: The MasSpec Pen being used to probe tissue during surgery (Photo courtesy of Baylor College of Medicine)
Image: The MasSpec Pen being used to probe tissue during surgery (Photo courtesy of Baylor College of Medicine)

Thyroid and parathyroid gland surgeries pose significant challenges, even for experienced surgeons. These relatively small neck structures share characteristics like color and texture, complicating visual differentiation. For instance, during thyroid removal procedures, accidental parathyroid removal occurs in about 25% of cases. Similarly, unsuccessful parathyroid removals often result from the inability to locate and resect diseased parathyroid tissue, as thyroid nodules and lymph nodes can be mistaken for parathyroid tissue. There is a critical need for innovative methods to preserve healthy tissue and ensure precise resection.

In a new project, surgeons at Baylor College of Medicine (Houston, TX, USA) extensively tested the MasSpec Pen during thyroid and parathyroid surgeries. In the operating room, the MasSpec Pen helps surgeons identify tissues for resection before actually performing the procedure, ensuring accurate tissue removal without unnecessary damage. Integrating seamlessly into the surgical workflow, the pen can be sterilized like other instruments and simply connected to the mass spectrometer. Its intuitive use holds immense potential for saving time during surgery. The pen primarily detects small molecules like metabolites (cell metabolism byproducts) and lipids created by cells. Each tissue has a unique metabolite and lipid pattern. While many molecules are similar across tissues, their concentrations vary based on tissue type, enabling surgeons to differentiate tissues. The process is simple: the surgeon places the pen gently on the tissue, which deposits a droplet of room-temperature sterile water, extracting small molecules. The droplet is then directed to a real-time mass spectrometer that reveals the tissue's molecular composition, indicating its type. Importantly, this procedure does not harm the analyzed tissues.

In order to assess the precision of this novel technology, the scientists conducted a comparison between the tissue identification outcomes produced by the MasSpec Pen and the well-established method of tissue identification—pathology analysis. Pathologists are experts who specialize in microscopically discerning tissue samples. The MasSpec Pen exhibited exceptional accuracy in distinguishing thyroid, parathyroid, and lymph node tissues during surgeries, achieving accuracy rates exceeding 90%. Results from the MasSpec Pen analysis were available in around 20 seconds, whereas processing samples for pathology analysis (referred to as frozen section) during surgery can extend to an hour, thus saving both procedure time and cost. Typically, prolonged surgeries heighten the risk of complications. The use of the MasSpec Pen offers the benefit of real-time tissue identification during surgical procedures, enhancing patient care.

“The MasSpec Pen could be applied to surgeries of other organs, such as lungs or pancreas,” said co-corresponding author Dr. James Suliburk, associate professor of surgery and member of the Dan L Duncan Comprehensive Cancer Center at Baylor College of Medicine. “We think this can really revolutionize how we do surgery.”

Related Links:
Baylor College of Medicine

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.