We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App

Automated AI-Powered Microscope Accurately Identifies Malaria Parasites in Blood Samples

By LabMedica International staff writers
Posted on 11 Aug 2023
Print article
Image: New high-tech microscope uses AI to successfully detect malaria in returning travelers (Photo courtesy of Freepik)
Image: New high-tech microscope uses AI to successfully detect malaria in returning travelers (Photo courtesy of Freepik)

Every year, over 200 million individuals contract malaria, with more than half a million of these cases resulting in fatalities. The World Health Organization advocates for the use of parasite-based diagnosis prior to commencing treatment for the infectious disease caused by Plasmodium parasites. Various diagnostic techniques are available, including conventional light microscopy, rapid diagnostic tests, and PCR. Nevertheless, the established benchmark for malaria diagnosis is manual light microscopy, where a specialist examines blood samples under a microscope to verify the presence of malaria parasites. However, the result accuracy is heavily dependent on the expertise of the microscopist and can be affected by fatigue caused by workloads among the professionals conducting the tests.

Due to the demanding nature of traditional diagnosis and the high workload, an international team of researchers undertook an investigation into the feasibility of employing a novel system that combines an automated scanning microscope with artificial intelligence (AI) for clinical diagnosis. The results indicated that this system identified malaria parasites with almost the same accuracy as experienced microscopists following standard diagnostic procedures. This advancement holds the potential to ease the burden of microscopists and increase the manageable patient caseload.

Researchers at The Hospital for Tropical Diseases at UCLH (London, UK) tested a fully automated malaria diagnostic system comprising both hardware and software components. The automated microscopy platform scans blood samples, and algorithms for malaria detection process the images to detect the presence and quantity of parasites. The researchers analyzed more than 1,200 blood samples from travelers who had returned to the UK from regions where malaria is prevalent. The study evaluated the accuracy of the AI-microscope system in a true clinical setting under ideal conditions.

The researchers compared the results obtained from both manual light microscopy and the AI-microscope system. Manually, 113 samples were identified as having malaria parasites, whereas the AI system accurately detected 99 positive samples, resulting in an 88% accuracy rate. Despite this commendable accuracy rate, the automated system also produced false positives, indicating 122 samples as positive when they were not, potentially leading to unnecessary administration of anti-malarial drugs to patients.

“At an 88% diagnostic accuracy rate relative to microscopists, the AI system identified malaria parasites almost, though not quite, as well as experts,” said Dr. Roxanne Rees-Channer, a researcher at The Hospital for Tropical Diseases at UCLH. “This level of performance in a clinical setting is a major achievement for AI algorithms targeting malaria. It indicates that the system can indeed be a clinically useful tool for malaria diagnosis in appropriate settings.”

Related Links:

Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
POCT Fluorescent Immunoassay Analyzer
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article


Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: The HelioLiver Dx test has met the coprimary and secondary study endpoints in the CLiMB trial (Photo courtesy of Helio Genomics)

Blood-Based Test Outperforms Ultrasound in Early Liver Cancer Detection

Patients with liver cirrhosis and chronic hepatitis B are at a higher risk for developing hepatocellular carcinoma (HCC), the most prevalent type of liver cancer. The American Association for the Study... Read more


view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more


view channel
Image: The POC PCR test shortens time for STI test results (Photo courtesy of Visby Medical)

POC STI Test Shortens Time from ED Arrival to Test Results

In a 2024 sexually transmitted infections (STIs) surveillance report by the World Health Organization (WHO), over 2.5 million cases were recorded, alongside a rise in the inappropriate use of antibiotics... Read more


view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.