We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Automated AI-Powered Microscope Accurately Identifies Malaria Parasites in Blood Samples

By LabMedica International staff writers
Posted on 11 Aug 2023

Every year, over 200 million individuals contract malaria, with more than half a million of these cases resulting in fatalities. More...

The World Health Organization advocates for the use of parasite-based diagnosis prior to commencing treatment for the infectious disease caused by Plasmodium parasites. Various diagnostic techniques are available, including conventional light microscopy, rapid diagnostic tests, and PCR. Nevertheless, the established benchmark for malaria diagnosis is manual light microscopy, where a specialist examines blood samples under a microscope to verify the presence of malaria parasites. However, the result accuracy is heavily dependent on the expertise of the microscopist and can be affected by fatigue caused by workloads among the professionals conducting the tests.

Due to the demanding nature of traditional diagnosis and the high workload, an international team of researchers undertook an investigation into the feasibility of employing a novel system that combines an automated scanning microscope with artificial intelligence (AI) for clinical diagnosis. The results indicated that this system identified malaria parasites with almost the same accuracy as experienced microscopists following standard diagnostic procedures. This advancement holds the potential to ease the burden of microscopists and increase the manageable patient caseload.

Researchers at The Hospital for Tropical Diseases at UCLH (London, UK) tested a fully automated malaria diagnostic system comprising both hardware and software components. The automated microscopy platform scans blood samples, and algorithms for malaria detection process the images to detect the presence and quantity of parasites. The researchers analyzed more than 1,200 blood samples from travelers who had returned to the UK from regions where malaria is prevalent. The study evaluated the accuracy of the AI-microscope system in a true clinical setting under ideal conditions.

The researchers compared the results obtained from both manual light microscopy and the AI-microscope system. Manually, 113 samples were identified as having malaria parasites, whereas the AI system accurately detected 99 positive samples, resulting in an 88% accuracy rate. Despite this commendable accuracy rate, the automated system also produced false positives, indicating 122 samples as positive when they were not, potentially leading to unnecessary administration of anti-malarial drugs to patients.

“At an 88% diagnostic accuracy rate relative to microscopists, the AI system identified malaria parasites almost, though not quite, as well as experts,” said Dr. Roxanne Rees-Channer, a researcher at The Hospital for Tropical Diseases at UCLH. “This level of performance in a clinical setting is a major achievement for AI algorithms targeting malaria. It indicates that the system can indeed be a clinically useful tool for malaria diagnosis in appropriate settings.”

Related Links:
UCLH 


New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
New
Laboratory Software
ArtelWare
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Platelets sequester cfDNA during circulation (Murphy L. et al., Science, 2025; DOI: 10.1126/science.adp3971)

Platelets Could Improve Early and Minimally Invasive Detection of Cancer

Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.