We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Automated AI-Powered Microscope Accurately Identifies Malaria Parasites in Blood Samples

By LabMedica International staff writers
Posted on 11 Aug 2023
Print article
Image: New high-tech microscope uses AI to successfully detect malaria in returning travelers (Photo courtesy of Freepik)
Image: New high-tech microscope uses AI to successfully detect malaria in returning travelers (Photo courtesy of Freepik)

Every year, over 200 million individuals contract malaria, with more than half a million of these cases resulting in fatalities. The World Health Organization advocates for the use of parasite-based diagnosis prior to commencing treatment for the infectious disease caused by Plasmodium parasites. Various diagnostic techniques are available, including conventional light microscopy, rapid diagnostic tests, and PCR. Nevertheless, the established benchmark for malaria diagnosis is manual light microscopy, where a specialist examines blood samples under a microscope to verify the presence of malaria parasites. However, the result accuracy is heavily dependent on the expertise of the microscopist and can be affected by fatigue caused by workloads among the professionals conducting the tests.

Due to the demanding nature of traditional diagnosis and the high workload, an international team of researchers undertook an investigation into the feasibility of employing a novel system that combines an automated scanning microscope with artificial intelligence (AI) for clinical diagnosis. The results indicated that this system identified malaria parasites with almost the same accuracy as experienced microscopists following standard diagnostic procedures. This advancement holds the potential to ease the burden of microscopists and increase the manageable patient caseload.

Researchers at The Hospital for Tropical Diseases at UCLH (London, UK) tested a fully automated malaria diagnostic system comprising both hardware and software components. The automated microscopy platform scans blood samples, and algorithms for malaria detection process the images to detect the presence and quantity of parasites. The researchers analyzed more than 1,200 blood samples from travelers who had returned to the UK from regions where malaria is prevalent. The study evaluated the accuracy of the AI-microscope system in a true clinical setting under ideal conditions.

The researchers compared the results obtained from both manual light microscopy and the AI-microscope system. Manually, 113 samples were identified as having malaria parasites, whereas the AI system accurately detected 99 positive samples, resulting in an 88% accuracy rate. Despite this commendable accuracy rate, the automated system also produced false positives, indicating 122 samples as positive when they were not, potentially leading to unnecessary administration of anti-malarial drugs to patients.

“At an 88% diagnostic accuracy rate relative to microscopists, the AI system identified malaria parasites almost, though not quite, as well as experts,” said Dr. Roxanne Rees-Channer, a researcher at The Hospital for Tropical Diseases at UCLH. “This level of performance in a clinical setting is a major achievement for AI algorithms targeting malaria. It indicates that the system can indeed be a clinically useful tool for malaria diagnosis in appropriate settings.”

Related Links:
UCLH 

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Chagas Disease Test
LIAISON Chagas
New
Ultra-Low Temperature Freezer
iUF118-GX

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.