We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

24 Feb 2024 - 28 Feb 2024
05 Mar 2024 - 07 Mar 2024

Device Converts Smartphone into Fluorescence Microscope for Just USD 50

By LabMedica International staff writers
Posted on 14 Mar 2023
Print article
Image: Live view of non-fluorescent specimens using the glowscope frame (Photo courtesy of Winona State University)
Image: Live view of non-fluorescent specimens using the glowscope frame (Photo courtesy of Winona State University)

Fluorescence microscopes are utilized to examine specimens labeled with fluorescent stains or expressing fluorescent proteins, like those tagged with green fluorescent protein. However, since these microscopes come with a hefty price tag of several thousand US dollars, their use is typically limited to well-funded research labs. Now, a new device called the "Glowscope" can transform a smartphone or tablet into a fluorescence microscope for less than USD 50. This device allows for imaging of cells, tissues, and organisms under low magnification and can be used in schools, science outreach settings, and even in research labs.

The glowscope, devised by scientists at Winona State University (Winona, MN, USA), is built using materials like plexiglass and plywood frame, a clip-on camera lens, an LED torch, and theatre stage lighting filters. Using the frame, a smartphone or tablet is positioned above a specimen while the lens is clipped onto the phone or tablet camera to enable magnification. The specimen is illuminated by the LED torch and a lighting filter is placed over the lens to filter out unwanted wavelengths of light, allowing for visualization of fluorescent light emitted by the specimen.

The scientists used live zebrafish embryos which are between two to three millimeters long and express fluorescent proteins in the spinal cord, cardiac tissue, or hindbrain to demonstrate the efficiency of the glowscope. The clip-on lens provided an approximately five-fold magnification and could image green and red fluorescent tissues with a resolution of up to 10 micrometers which is adequate to view individual pigment cells. With the glowscope, the scientists were able to measure the embryos' heart rates and even observe the movements of individual heart chambers after enhancing the clarity of the videos using free software.

With the materials cost ranging from USD 30 to USD 50, the glowscope presents an affordable alternative to expensive fluorescence microscopes. Scientists have suggested that school students could use glowscopes to study behavior, physiology, development, genetics, and anatomy in small organisms expressing fluorescent proteins that could be obtained from research labs. Additionally, research labs without access to multiple fluorescence microscopes could acquire video data by simultaneously utilizing several glowscopes and smartphones, according to the scientists.

Related Links:
Winona State University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9

Print article

Channels

Clinical Chemistry

view channel
Image: Wireless Point-of-Care Testing for Hepatitis B Virus (Photo courtesy of Chulalongkorn University)

Wireless Hepatitis B Test Kit Completes Screening and Data Collection in One Step

Hepatitis B, a significant global health concern, is responsible for chronic liver diseases like cirrhosis and liver cancer which is one of the most common cancers worldwide. The challenge with hepatitis... Read more

Molecular Diagnostics

view channel
Image: Aptiva utilizes particle-based multi-analyte technology (PMAT) (Photo courtesy of Werfen)

Novel Immunoassays Enable Early Diagnosis of Antiphospholipid Syndrome

Antiphospholipid syndrome (APS) is an autoimmune disorder that typically presents as venous or arterial thrombosis and/or pregnancy loss. Diagnosing APS can be difficult as its symptoms often resemble... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Pathology

view channel
Image: The photoacoustic spectral response sensing instrument is based on low-cost laser diodes (Photo courtesy of Khan et al., doi 10.1117/1.JBO.29.1.017002)

Compact Photoacoustic Sensing Instrument Enhances Biomedical Tissue Diagnosis

The pursuit of precise and efficient diagnostic methods is a top priority in the constantly evolving field of biomedical sciences. A promising development in this area is the photoacoustic (PA) technique.... Read more

Industry

view channel
Image: The companies will develop genetic testing systems based on capillary electrophoresis sequencers (Photo courtesy of 123RF)

Sysmex and Hitachi Collaborate on Development of New Genetic Testing Systems

Sysmex Corporation (Kobe, Japan) and Hitachi High-Tech Corporation (Tokyo, Japan) have entered into a collaboration for the development of genetic testing systems using capillary electrophoresis sequencers... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.