We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Liquid Biopsy Assay Evaluated for Early Detection of Gastric Cancer

By LabMedica International staff writers
Posted on 08 Sep 2021
Print article
Image: Schematic representation of cancer-related biomolecules such as cells, proteins, nucleic acids, miRNA and microvesicles circulating into the bloodstream, and collection of these biomarkers by liquid biopsy (Photo courtesy of University of Florence)
Image: Schematic representation of cancer-related biomolecules such as cells, proteins, nucleic acids, miRNA and microvesicles circulating into the bloodstream, and collection of these biomarkers by liquid biopsy (Photo courtesy of University of Florence)
Gastric cancer (GC) is the fourth most-commonly diagnosed cancer, and the third leading cause of cancer-associated mortality worldwide. Despite improvements in treatment modalities, the prognosis for advanced GC following curative resection remains poor.

Patients diagnosed with early-stage GC have a favorable prognosis, underscoring the paradigm that identification at earlier stages remains an attractive strategy for reducing GC-associated patient mortality. The use of liquid biopsy-based, noninvasive cancer biomarkers has become increasingly desirable, and several promising molecular biomarkers have been identified in blood, urine, and gastric juice.

Gastroenterologists at the Baylor University Medical Center (Dallas, TX) and their international colleagues analyzed more than 1,900 tissue and serum specimens from patients with GC, adjacent normal tissues, and healthy participants across four phases. Study phases included a biomarker discovery phase, a tissue validation phase, a retrospective serum validation phase, and a prospective serum performance evaluation phase.

The biomarker discovery cohort (436 GC tissues and 41 adjacent normal mucosae) was analyzed to identify miRNA candidates. In the tissue validation phase, quantitative reverse-transcription–polymerase chain reaction (qRT-PCR) assays were performed to interrogate the expression levels of candidate miRNAs in 50 pairs of matched, fresh-frozen, primary tumor and adjacent normal tissues from patients with GC. In the prospective serum validation phase, serum specimens were collected from 176 patients with GC and 173 healthy participants, matched by age and sex, who were prospectively recruited from March 2017 to August 2018. The 10 miRNAs were validated in two additional independent datasets that included 40 GC and 40 non-cancerous tissue specimens with miRNA profiling data acquired using the miRNA microarray (Agilent Technologies, Santa Clara, CA, USA).

The scientists reported that the data sets for the genome-wide expression profiling analysis stage included 598 total patient samples (284 [55.4%] from men; mean ±SE patient age, 65.7 ± 0.5 years). The resulting 10-miRNA signature was validated in two retrospective GC serum cohorts (586 patients; 348 [59.4%] men, mean ± SE age, 66.0 ± 0.7 years), which led to the establishment of a 5-miRNA signature (AUC, 0.90) that also exhibited high levels of diagnostic performance in patients with stage I disease (AUC, 0.89) A risk-scoring model was derived and the assay was optimized to a minimal number of miRNAs. The performance of the resulting 3-miRNA signature was then validated in a prospective cohort of 349 patients with GC.

The final 3-miRNA signature (miR-18a, miR-181b, and miR-335) exhibited high diagnostic accuracy in all stages of patients (AUC, 0.86), including in patients with stage I disease (AUC, 0.85). This miRNA signature was superior to currently used blood markers and outperformed the endoscopic screening in a cost-effectiveness analysis (incremental cost-effectiveness ratio [USD 2,304.80 per quality-adjusted life-year]).

The authors concluded that their study established a robust, noninvasive, circulating miRNA signature for GC detection, and validated its diagnostic potential in multiple independent patient cohorts, both retrospective and prospective, highlighting its potential application for the early detection of patients with GC. The study was published on August 24, 2021 in the journal JAMA Network Open.

Related Links:
Baylor University Medical Center
Agilent Technologies


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Luteinizing Hormone Assay
DRG LH-Serum ELISA Kit
New
Fixed Speed Tube Rocker
GTR-FS

Print article

Channels

Clinical Chemistry

view channel
Image: A one-step confirmatory laboratory test could definitively diagnose active syphilis infection within 10 minutes (Photo courtesy of Adobe Stock)

First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes

In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.