We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel AI-Powered Method for Tissue Analysis Improves Understanding of Disease Pathology

By LabMedica International staff writers
Posted on 11 Jun 2024
Print article
Image: The new AI-powered statistics method has the potential to improve tissue and disease research (Photo courtesy of 123RF)
Image: The new AI-powered statistics method has the potential to improve tissue and disease research (Photo courtesy of 123RF)

Scientists at Brown University (Providence, RI, USA) and the University of Michigan (Ann Arbor, MI, USA) have created a groundbreaking computational technique to examine complex tissue data, potentially revolutionizing our understanding of diseases and their treatment. The method, known as Integrative and Reference-Informed tissue Segmentation (IRIS), utilizes machine learning and artificial intelligence to provide biomedical researchers with accurate insights into tissue development, disease pathology, and tumor structuring. IRIS employs spatially resolved transcriptomics (SRT) data and incorporates single-cell RNA sequencing data as a reference. This approach allows for the simultaneous examination of multiple tissue layers and accurately identifies different regions with exceptional computational speed and precision. In contrast to traditional methods that offer averaged data from tissue samples, SRT delivers a much more detailed perspective, locating thousands of specific points within a single tissue section.

Handling vast and complex datasets has always posed significant challenges, and IRIS addresses these by using algorithms to sift through data, segmenting various functional domains, such as tumor areas, and shedding light on cellular interactions and the dynamics of disease progression. Unlike existing methods, IRIS directly maps the cellular composition of tissues and delineates biologically meaningful spatial domains, enhancing the comprehension of cellular activities that drive tissue functions. The developers of IRIS tested it on six SRT datasets, assessing its effectiveness compared to other spatial domain analysis methods. As SRT technologies gain traction and become more widely used, the creators of IRIS anticipate that it will contribute to identifying new clinical intervention points or pharmaceutical targets, thereby enhancing personalized treatment strategies and ultimately improving patient health outcomes.

"The computational approach of IRIS pioneers a novel avenue for biologists to delve into the intricate architecture of complex tissues, offering unparalleled opportunities to explore the dynamic processes shaping tissue structure during development and disease progression," said Xiang Zhou, professor of biostatistics at the University of Michigan School of Public Health. "Through characterizing refined tissue structures and elucidating their alterations during disease states, IRIS holds the potential to unveil mechanistic insights crucial for understanding and combating various diseases." The researchers' findings were published in the journal Nature Methods on June 6, 2024.

Related Links:
Brown University
University of Michigan

New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit
New
PSA Test
Human Semen Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: Rapid and non-invasive analysis of paracetamol overdose using paper arrow-mass spectrometry (Photo courtesy of Dr Simon Maher/University of Liverpool)

New Saliva Test Rapidly Identifies Paracetamol Overdose

Paracetamol is the most widely used medication worldwide, and its easy availability contributes to its frequent misuse and overdose. Overdosing on paracetamol can lead to liver toxicity, requiring hospitalization.... Read more

Molecular Diagnostics

view channel
Image: The study found previously undetected cancers in pregnant women with abnormal prenatal cfDNA test results (Photo courtesy of NIH)

Abnormal Prenatal Blood Test Results Could Indicate Hidden Maternal Cancers

Researchers have discovered previously undiagnosed cancers in 48.6% of pregnant individuals who received abnormal results from prenatal cell-free DNA (cfDNA) testing, which is typically used to screen... Read more

Hematology

view channel
Image: RHD screening just got easier with single exon NIPT testing (Photo courtesy of Devyser)

Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma

RhD (rhesus D) is a blood group type that can trigger immune responses. Individuals who lack RhD on their red blood cells are classified as RhD-negative. These individuals may produce antibodies against... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: A new test finds bacteria in liquids and indicate their presence by changing color (Photo courtesy of Georgia Kirkos/McMaster University)

New Hands-Free Rapid Test Detects Bacteria in Fluids

Bacteriophages, the most abundant form of life on Earth, are specialized to target and destroy specific types of bacteria. Their natural ability to fight bacteria has long been harnessed to treat infections.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.