We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App

Molecular Profiling Improves Diagnosis for Children with High Risk Cancers

By LabMedica International staff writers
Posted on 03 Jun 2024
Print article
Image: Initially aimed at children with high-risk cancers, ZERO now includes all young cancer patients in Australia (Photo courtesy of Zero Childhood Cancer)
Image: Initially aimed at children with high-risk cancers, ZERO now includes all young cancer patients in Australia (Photo courtesy of Zero Childhood Cancer)

Cancer remains the leading cause of disease-related death among children in most developed nations, and approximately one-fourth of these patients are diagnosed with aggressive, high-risk, or relapsed cancers, facing a dismal five-year survival rate of under 30%. Diagnosing these conditions accurately can be challenging, and even survivors often endure lifelong side effects from the harsh treatments required for their recovery. Now, researchers have demonstrated that through precision medicine, not only can diagnoses be more accurate, but implementing precision-guided, targeted treatments earlier can also enhance the two-year progression-free survival rates for young cancer patients.

The Zero Childhood Cancer National Precision Medicine Program (ZERO) (Randwick, Australia), initially aimed at children with high-risk cancers, now includes all young cancer patients in Australia. Since its inception in 2017, the program has enrolled over 1,600 children. ZERO’s inaugural clinical trial, which ran from 2017 to 2022, yielded insights into genetic predispositions to cancer by identifying gene variants in the germline, or child genomic cancer risk, in 16% of children with high-risk cancers. The study revealed that whole genome sequencing (WGS) was more effective in detecting these germline cancer predisposition variants than traditional clinical testing methods. This is largely because more than half of these variants had not been previously detected in standard clinical settings, as the patients did not meet conventional testing criteria. Moreover, about 70% of these germline variants were not previously associated with the cancer types observed in the patients.

Interestingly, 80% of these newly identified variants had implications for cancer surveillance and risk reduction among the patients' relatives, offering a much greater benefit than standard clinical practices. This finding holds profound implications for both patients and their families. Moving forward, researchers aim to enhance the application of precision medicine by identifying new cancer-driving targets, aligning these targets with more effective and less harmful treatments, and developing better, minimally invasive methods to monitor the behavior of a child’s cancer. They also plan to speed up access to clinical trials by expanding the ability to match more targets with appropriate treatments and aim to integrate precision medicine more seamlessly into standard healthcare systems.

“The tools needed to implement precision medicine more widely are not cheap, but its unquestionable promise in better stratifying the diagnosis and identifying the most likely effective targeted treatments for an individual’s cancer, together with the reduction in costs as technologies, computational capabilities, and automation improves leads me to believe that, in the future, multiomic profiling driving research-guided clinical care will be the gold standard, not just in cancer, but in many other diseases too,” said Associate Professor Vanessa Tyrrell, Director of ZERO.

Related Links:
Zero Childhood Cancer Program

Print article


Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: The blood test uses AI to predict Parkinson’s seven years before onset of symptoms (Photo courtesy of Kateryna Kon/Shutterstock)

AI-Powered Blood Test Predicts Parkinson's Seven Years before Symptoms Appear

Parkinson’s disease is currently the fastest-growing neurodegenerative disorder worldwide, affecting nearly 10 million people globally. It is a progressive disease caused by the deterioration and death... Read more


view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more


view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.