We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Events

10 Feb 2026 - 13 Feb 2026
17 Apr 2026 - 21 Apr 2026

Smartphone-Controlled Microfluidic Device Enables Rapid Influenza Detection

By LabMedica International staff writers
Posted on 15 Jul 2024

The influenza virus represents a significant public health concern, annually causing epidemics with high morbidity and mortality rates. More...

The virus is known for its high mutation rate and the existence of multiple subtypes, which require varied clinical approaches. Consequently, there is a critical need for an accurate, rapid, and portable method to differentiate between influenza virus subtypes to manage virus transmission and inform clinical treatment decisions. Researchers have now developed a spatial encoding of a centrifugal microfluidic disc-integrated smartphone-controlled (SEDphone) platform for detecting influenza virus subtypes.

In a study, researchers from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences (Anhui, China) developed a novel approach that combines Loop-mediated Isothermal Amplification (LAMP) with CRISPR/Cas12a technologies for rapid and accurate detection of various influenza viruses. This method amplifies target sequences using LAMP and detects them through CRISPR/Cas12a-mediated trans-cleavage activity, thus cleaving reporter probes and emitting fluorescent signals. This technique is highly sensitive and reduces the occurrence of false positives. To aid the detection of different influenza strains, the researchers devised a flexible model capable of targeting multiple flu types. Following optimization, this method can identify five influenza types (H1N1, H3N2, H5N1, H7N9, and Influenza B) within 45 minutes, even at low viral concentrations (10 copies/μL).

Furthermore, to facilitate simultaneous LAMP amplification and CRISPR detection, the team engineered a centrifugal microfluidic chip with spatial encoding features. They also developed a portable testing device, dubbed SEDphone, which operates via smartphone control. This device can simultaneously amplify and detect multiple influenza virus types. Incorporating a dual temperature zone design, it addresses the temperature variance required for both technologies. Clinical sample testing confirmed that this innovative method and the SEDphone device are effective in rapidly identifying various influenza subtypes. The research results were published in Sensors and Actuators: B. Chemical.

"Our research offers a new way to quickly and accurately detect various pathogens in real-time. This method can be used in fever clinics or at home, helping to reduce the risk of unnecessary cross-infection and easing the burden on healthcare systems," said Dr. ZHU Cancan, a member of the research team.

Related Links:
Hefei Institutes of Physical Science


Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sample Transportation System
Tempus1800 Necto
Pipette
Accumax Smart Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.