We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Computational Tool Integrates Transcriptomic Data for Improved Breast Cancer Diagnosis and Treatment

By LabMedica International staff writers
Posted on 22 Jul 2024

Breast cancer is the most commonly diagnosed cancer globally, presenting in various subtypes that require precise identification for effective, personalized treatment. More...

Traditionally, cancer subtyping has been conducted through histological staining (immunohistochemistry), which involves identifying specific markers that categorize tumors into distinct subtypes. Recently, high-throughput transcriptomic profiling has transformed the way breast cancer subtypes are identified by analyzing gene activity in cancer cells through the total messenger RNAs present, which correspond to gene sequences and are used by ribosomes to synthesize proteins.

Transcriptomic profiling utilizes RNA sequencing (RNAseq), a rapidly evolving molecular biology technique that sequences RNA strands efficiently. As RNA sequencing becomes more affordable, it holds the potential for routine clinical integration to aid in diagnosis and treatment decisions. However, its application is currently limited by the requirement for processing large sample batches simultaneously and difficulties in comparing samples across different platforms. Now, scientists have developed a computational tool that collates breast cancer transcriptomic data from various databases, enhancing precision oncology by accurately predicting molecular subtypes and therapeutic responses.

The computational tool named EMBER developed by scientists at EPFL (Lausanne, Switzerland) integrates over 11,000 breast cancer transcriptomes, allowing for the prediction of cancer subtypes on an individual sample basis and capturing essential biological pathways, thereby improving the prediction of therapy responses. EMBER uses a statistical model that merges RNA-seq and microarray data from major datasets like TCGA and METABRIC, focusing on early-stage breast cancer patients. The data is normalized to a common scale, selecting the 1000 most variable genes and using 44 stable genes for normalization to maintain important gene expression features.

EMBER was validated with independent patient cohorts and tested on clinical trial data, such as the POETIC trial, identifying potential therapy resistance mechanisms like increased androgen receptor signaling and decreased TGFβ signaling. It accurately identified the five molecular subtypes of breast cancer and crucial pathways, including estrogen receptor signaling and cell proliferation. A notable finding is that EMBER's estrogen receptor signaling score surpasses the immunohistochemistry-based ER index used in clinics, suggesting EMBER's higher accuracy in predicting responses to endocrine therapy. By offering a consolidated platform for breast cancer transcriptomic data, EMBER facilitates a deeper understanding of molecular subtypes and treatment responses, potentially leading to more tailored treatments and improved outcomes for patients with ER+ breast cancer. EMBER also presents a viable method for integrating RNA sequencing into standard diagnostic procedures, promoting more comprehensive and cost-effective cancer diagnostics. This method not only advances precision oncology but also establishes a solid framework for further research and clinical applications.

Related Links:
EPFL


New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
New
ESR Analyzer
TEST1 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.