We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Handheld Device Puts Power of Lab-Based Diagnostic Testing in the Palm of Your Hand

By LabMedica International staff writers
Posted on 24 Jul 2024

Many common tests for infectious diseases work by detecting either antigens related to the virus or antibodies created in response to the infection. More...

These tests, which now include widely used COVID-19 rapid antigen tests, offer the advantages of speed and broad availability. However, polymerase chain reaction (PCR) tests still surpass these in terms of accuracy, reaching nearly 100%. PCR tests, considered the gold standard in infectious disease diagnostics, excel because they detect a pathogen’s genetic material like RNA directly. This capability increases specificity, reducing the likelihood of false positives. PCR can also amplify minimal amounts of genetic material, allowing it to detect infections at very low levels. Yet, PCR requires specialized skills and expensive equipment, which limits its availability, particularly in low-resource settings.

Researchers at the University of Connecticut (Storrs, CT, USA) have now developed a platform technology that incorporates PCR-like capabilities within a handheld device, as detailed in a study published in Advanced Science. This device can detect HIV and SARS-CoV-2 with PCR-level performance but is more accessible, faster, and portable, potentially making advanced diagnostics more widespread. This new device, the lab-in-a-magnetofluidic tube (LIAMT), integrates all necessary functions into a single, portable unit unlike the multiple large machines required for PCR. LIAMT simplifies the isolation of genetic material by using magnetism instead of centrifugation. It employs tiny magnetic beads within a 1.5-milliliter tube to capture viral RNA, which is then pulled through washing steps by a magnet inside the device, effectively isolating the RNA. LIAMT does not require the thermal cycling equipment typical of PCR. Instead, it uses a constant, low-temperature process facilitated by special proteins that separate and duplicate nucleic acid strands. After amplification, the LIAMT device slightly heats the sample to melt a wax barrier, releasing a solution of CRISPR enzymes that emit a fluorescent signal upon binding to their target. This signal indicates the presence of viral RNA if it's substantial enough, visible through a small window on the device.

This system, devoid of heavy equipment like centrifuges and thermal cyclers, offers a significant advancement in making diagnostic tools more accessible and faster—producing results within about an hour compared to the longer processes associated with traditional PCR, where samples often need to be sent away for analysis. To verify its effectiveness, researchers tested LIAMT against traditional PCR using swab samples for SARS-CoV-2 and blood plasma samples for HIV. The results showed LIAMT to have comparable sensitivity and specificity, aligning closely with PCR results in most cases. Encouraged by these findings, the researchers plan to further refine LIAMT’s performance and usability, particularly to enhance care for HIV patients who require regular testing. This could transform routine testing by eliminating the need for hospital visits and lengthy waits, offering instead rapid, reliable results at the point of care.

“With our device, we used the volume you could get from a finger prick to produce accurate HIV test results quickly. Patients could take these tests at a local point-of-care center or at home and receive the medication they need more quickly,” said Changchun Liu, Ph.D., a professor of biomedical engineering at the University of Connecticut.

Related Links:
University of Connecticut


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
8-Channel Pipette
SAPPHIRE 20–300 µL
New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Platelets sequester cfDNA during circulation (Murphy L. et al., Science, 2025; DOI: 10.1126/science.adp3971)

Platelets Could Improve Early and Minimally Invasive Detection of Cancer

Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.