We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Events

02 Jun 2025 - 04 Jun 2025
11 Jun 2025 - 13 Jun 2025

Universal Blood Test Could Predict Organ Transplant Outcomes with Unprecedented Accuracy

By LabMedica International staff writers
Posted on 19 Jun 2024

In a landmark study, an interdisciplinary research team from The Westmead Institute for Medical Research (WIMR, NSW, Australia) and the University of Sydney (NSW, Australia) has identified, for the first time, common molecular biomarkers for transplant rejection across major transplanted organs, including hearts, lungs, livers, and kidneys. More...

Their findings suggest that the molecular pathways involved in organ rejection are consistent across these different solid organs. This breakthrough is crucial as it enables the development of strategies aimed at improving the success rates of all types of organ transplants by utilizing machine learning to predict transplant outcomes with remarkable accuracy.

In a collaborative effort, the researchers created the Pan-organ ResOurce for Molecular Allograft Dysfunction (PROMAD), a comprehensive molecular atlas that includes over 12,000 patient samples from across the world. This atlas allows broader access to transplant data that was previously unavailable to many researchers, fostering international cooperation. The creation of this atlas has led to the development of a proof of concept for a universal blood test that can predict the possibility of transplant rejection before it happens, potentially redefining standards in precision medicine and enhancing transplant outcomes globally.

The team is currently advancing this research by trialing a blood test in laboratory settings that could enable physicians to predict and prevent organ rejection. Moreover, their findings provide a foundation for applying these insights to other types of transplantation and different medical conditions. The encouraging outcomes of this research not only highlight the power of international collaboration but also offer new hope to millions awaiting life-saving transplants. Moving forward, the research will expand these discoveries to additional transplant types and further improve the predictive models used in the study.

"This study is a perfect example of how precision medicine can significantly impact clinical practices by integrating global data to benefit individual patients," said Professor Natasha Rogers, Deputy Director of WIMR's Centre for Transplant and Renal Research, and a senior author on the study. The findings of the study were published in Nature Medicine on June 18, 2024.

Related Links:
WIMR
University of Sydney


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
Enterovirus Test
Quanty Enterovirus System
New
Droplet Digital PCR System
QX600 AutoDG
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: New biomarkers could someday make it easy to spot Parkinson’s disease in a patient’s blood sample (Photo courtesy of Shutterstock)

Unique Blood-Based Genetic Signature Can Diagnose Parkinson’s Disease

Parkinson's disease is primarily recognized for its impact on the central nervous system. Recent scientific progress has shifted focus to understanding the involvement of the immune system in the onset... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Pathology

view channel
Image: The new tool is designed for accurate detection of structural variations in clinical samples (Photo courtesy of Karen Arnott/EMBL-EBI and Isabel Romero Calvo/EMBL)

ML Algorithm Accurately Identifies Cancer-Specific Structural in Long-Read DNA Sequencing Data

Long-read sequencing technologies are designed to analyze long, continuous stretches of DNA, offering significant potential to enhance researchers' abilities to detect complex genetic changes in cancer genomes.... Read more

Technology

view channel
Image: Concept of biosensor integrated into hygiene pads enabling direct semi-quantitative analysis of biomarkers in unprocessed menstruation blood (Photo courtesy of Dosnon, L et al. DOI: 10.1002/advs.202505170)

First Ever Technology Recognizes Disease Biomarkers Directly in Menstrual Blood in Sanitary Towels

Over 1.8 billion people menstruate worldwide, yet menstrual blood has been largely overlooked in medical practice. This blood contains hundreds of proteins, many of which correlate with their concentration... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.