We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Non-Invasive Microscopy Detects Activation and Distinguishes Cell Types

By LabMedica International staff writers
Posted on 04 Dec 2019
Measurement techniques that allow the global analysis of cellular responses while retaining single-cell sensitivity are increasingly needed in order to understand complex and dynamic biological processes.

Cells have numerous traits that can be used to identify them: genetic, epigenetic, behavioral, compositional, or morphological features can all be used to define the phenotype of a given cell. More...
As the discrimination capabilities of measurement systems improve, newly defined cell sub-types can emerge.

Scientists at the Osaka University (Osaka, Japan) developed a label-free multimodal imaging platform that enables the study of cell cultures non-invasively without the need of any contrast agent. The pair showed how the label-free signals can be employed to create models that can detect the activation state of macrophage cells and distinguish between different cell types even in the case of highly heterogeneous populations of primary cells.

The tests composed of three cell types and two conditions (Control and LPS) yield six main sets of controlled conditions where measurements have been approximately evenly distributed between them. To understand how uncontrollable variability might affect the results, the measurements are performed over several days, with cells plated onto different dishes to account for differences in cell culture, where 200–400 cells are measured per dish. The team combined the imaging information from quantitative phase imaging (QPI) recorded with off-axis holography and auto-fluorescence (AF), along with Raman spectroscopy, to retrieve single-cell level indicators enabling the analysis of cellular responses and conditions.

The team then developed generalized statistical tools to assess the influence of both controlled (cell sub-populations, immune stimulation) and uncontrolled (culturing conditions, animal variations, etc.) experimental parameters on the label-free biomarkers. These indicators can detect different macrophage cell sub-populations originating from different progenitors as well as their activation state, and how these changes are related to specific differences in morphology and molecular content. The molecular indicators also display further sensitivity that allow identification of other investigational conditions, such as differences between cells originating from different animals, allowing the detection of outlier behavior from given cell sub-populations. The study was published on November 19, 2019 in the journal Scientific Reports.

Related Links:
Osaka University


New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Pipette
Accumax Smart Series
Automatic CLIA Analyzer
Shine i9000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: AI-powered ctDNA analysis provides clinicians with a new lens to monitor disease evolution (Photo courtesy of Brandon Stelter, Katie Han, Kyle Smith, and Paul Northcott)

AI-Powered Liquid Biopsy Classifies Pediatric Brain Tumors with High Accuracy

Liquid biopsies offer a noninvasive way to study cancer by analyzing circulating tumor DNA in body fluids. However, in pediatric brain tumors, the small amount of ctDNA in cerebrospinal fluid has limited... Read more

Immunology

view channel
Image: The TmS computational biomarker analyzes tumor gene expression and microenvironment data to guide treatment decisions (Photo courtesy of MD Anderson Cancer Center)

New Biomarker Predicts Chemotherapy Response in Triple-Negative Breast Cancer

Triple-negative breast cancer is an aggressive form of breast cancer in which patients often show widely varying responses to chemotherapy. Predicting who will benefit from treatment remains challenging,... Read more

Pathology

view channel
Image: Powered by OptraSCAN’s patented OS‑SiA technology, the platform performs scanning, indexing, and AI‑driven analysis simultaneously (Photo courtesy of OptraSCAN)

New AI-Driven Platform Standardizes Tuberculosis Smear Microscopy Workflow

Sputum smear microscopy remains central to tuberculosis treatment monitoring and follow-up, particularly in high‑burden settings where serial testing is routine. Yet consistent, repeatable bacillary assessment... Read more

Industry

view channel
Image: QuidelOrtho has entered into a strategic supply agreement with Lifotronic to expand its global immunoassay portfolio (Photo courtesy of QuidelOrtho)

QuidelOrtho Collaborates with Lifotronic to Expand Global Immunoassay Portfolio

QuidelOrtho (San Diego, CA, USA) has entered a long-term strategic supply agreement with Lifotronic Technology (Shenzhen, China) to expand its global immunoassay portfolio and accelerate customer access... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.