We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Non-Invasive Microscopy Detects Activation and Distinguishes Cell Types

By LabMedica International staff writers
Posted on 04 Dec 2019
Print article
Image: Methods of extracting features from label-free immune cell analysis. Multivariate label-free data, composed of both morphological and spectral parameters, are used to identify high-level features at the single-cell level such as cellular type, response to drugs, as well as response differences between specimens (Photo courtesy of Osaka University)
Image: Methods of extracting features from label-free immune cell analysis. Multivariate label-free data, composed of both morphological and spectral parameters, are used to identify high-level features at the single-cell level such as cellular type, response to drugs, as well as response differences between specimens (Photo courtesy of Osaka University)
Measurement techniques that allow the global analysis of cellular responses while retaining single-cell sensitivity are increasingly needed in order to understand complex and dynamic biological processes.

Cells have numerous traits that can be used to identify them: genetic, epigenetic, behavioral, compositional, or morphological features can all be used to define the phenotype of a given cell. As the discrimination capabilities of measurement systems improve, newly defined cell sub-types can emerge.

Scientists at the Osaka University (Osaka, Japan) developed a label-free multimodal imaging platform that enables the study of cell cultures non-invasively without the need of any contrast agent. The pair showed how the label-free signals can be employed to create models that can detect the activation state of macrophage cells and distinguish between different cell types even in the case of highly heterogeneous populations of primary cells.

The tests composed of three cell types and two conditions (Control and LPS) yield six main sets of controlled conditions where measurements have been approximately evenly distributed between them. To understand how uncontrollable variability might affect the results, the measurements are performed over several days, with cells plated onto different dishes to account for differences in cell culture, where 200–400 cells are measured per dish. The team combined the imaging information from quantitative phase imaging (QPI) recorded with off-axis holography and auto-fluorescence (AF), along with Raman spectroscopy, to retrieve single-cell level indicators enabling the analysis of cellular responses and conditions.

The team then developed generalized statistical tools to assess the influence of both controlled (cell sub-populations, immune stimulation) and uncontrolled (culturing conditions, animal variations, etc.) experimental parameters on the label-free biomarkers. These indicators can detect different macrophage cell sub-populations originating from different progenitors as well as their activation state, and how these changes are related to specific differences in morphology and molecular content. The molecular indicators also display further sensitivity that allow identification of other investigational conditions, such as differences between cells originating from different animals, allowing the detection of outlier behavior from given cell sub-populations. The study was published on November 19, 2019 in the journal Scientific Reports.

Related Links:
Osaka University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.