We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Nanorobotic Hand Made of DNA Grabs Viruses for Detection or Inhibition

By LabMedica International staff writers
Posted on 28 Nov 2024

Researchers have developed a miniature, four-fingered “hand” from a single piece of DNA, designed to detect the virus responsible for COVID-19 with high sensitivity, and even prevent viral particles from entering cells to cause infection. More...

Known as the NanoGripper, this nanorobotic hand can be customized to interact with other viruses or identify cell surface markers, potentially enabling targeted drug delivery, such as cancer treatments.

Drawing inspiration from the grasping ability of human hands and bird claws, researchers at the University of Illinois Urbana-Champaign (Champaign, IL, USA) designed the NanoGripper, which consists of four flexible fingers and a palm, all formed from one DNA nanostructure. Each finger features three joints, similar to a human finger, with its bending angle controlled by the design of the DNA scaffold. The fingers include DNA aptamers, molecules engineered to specifically bind to targets like the spike protein of the COVID-19 virus, causing the fingers to bend and encircle the target. The NanoGripper's base can attach to surfaces or other complexes, making it suitable for biomedical applications, such as sensing or drug delivery. For COVID-19 detection, the researchers integrated the NanoGripper with a photonic crystal sensor, resulting in a rapid 30-minute COVID-19 test that matches the sensitivity of traditional qPCR tests used in hospitals, which, while accurate, take longer than at-home tests.

Apart from diagnostics, the NanoGripper has potential applications in preventive medicine. The researchers discovered that when NanoGrippers were introduced into cell cultures exposed to COVID-19, the grippers surrounded the viruses, blocking the viral spike proteins from binding to the cell receptors, effectively preventing infection. In their article published in Science Robotics, the researchers explain that the NanoGripper can be easily modified to target other viruses, such as influenza, HIV, or hepatitis B. Additionally, they foresee using the NanoGripper for targeted drug delivery, where the fingers could be engineered to recognize specific cancer markers and deliver therapeutic agents directly to the affected cells.

“This approach has bigger potential than the few examples we demonstrated in this work,” said Xing Wang, a professor of bioengineering and of chemistry at the U. of I., who led the research team. “There are some adjustments we would have to make with the 3D structure, the stability and the targeting aptamers or nanobodies, but we’ve developed several techniques to do this in the lab. Of course it would require a lot of testing, but the potential applications for cancer treatment and the sensitivity achieved for diagnostic applications showcase the power of soft nanorobotics.”


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Serological Pipet Controller
PIPETBOY GENIUS
New
Myocardial Infarction Test
Finecare cTn I/NT-proBNP Rapid Quantitative Test
New
Whole Blood Control
Lyphochek Whole Blood Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The tip optofluidic immunoassay platform enables rapid, multiplexed antibody profiling using only 1 μL of fingertip blood (Photo courtesy of hLife, DOI:10.1016/j.hlife.2025.04.005)

POC Diagnostic Platform Performs Immune Analysis Using One Drop of Fingertip Blood

As new COVID-19 variants continue to emerge and individuals accumulate complex histories of vaccination and infection, there is an urgent need for diagnostic tools that can quickly and accurately assess... Read more

Pathology

view channel
Image: Microscopy image of invasive breast cancer cells degrading their underlying extracellular matrix (Photo courtesy of University of Turku)

Visualization Tool Illuminates Breast Cancer Cell Migration to Suggest New Treatment Avenues

Patients with breast cancer who progress from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) face a significantly worse prognosis, as metastatic disease remains incurable.... Read more

Technology

view channel
Image: The machine learning-based method delivers near-perfect survival estimates for PAC patients (Photo courtesy of Shutterstock)

AI Method Predicts Overall Survival Rate of Prostate Cancer Patients

Prostate adenocarcinoma (PAC) accounts for 99% of prostate cancer diagnoses and is the second most common cancer in men globally after skin cancer. With more than 3.3 million men in the United States diagnosed... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.