We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Genetic Signature in Newborns Predicts Neonatal Sepsis Before Symptoms Appear

By LabMedica International staff writers
Posted on 29 Oct 2024

Neonatal sepsis, which occurs due to the body’s abnormal response to severe infection within the first 28 days of life, results in approximately 200,000 deaths globally each year. More...

This condition affects around 1.3 million infants worldwide annually, with even higher rates reported in lower- and middle-income countries (LMICs). Diagnosing sepsis poses significant challenges for both healthcare providers and families. The symptoms can resemble those of various other illnesses, and tests to determine the presence of sepsis can take several days, may not always be accurate, and are largely confined to hospital settings. This uncertainty can lead to delays in administering urgent antibiotic treatment. Furthermore, even if treatment is successful, sepsis can cause lifelong consequences, including developmental delays in children, cognitive deficits, and long-term health issues. A new study has now revealed that a genetic signature in newborns can predict neonatal sepsis before any symptoms appear, offering the potential to assist healthcare professionals in diagnosing affected infants earlier, especially in LMICs where neonatal sepsis is a critical issue.

The extensive study was conducted by researchers at The University of British Columbia (UBC, Vancouver, BC, Canada) and Simon Fraser University (SFU, Burnaby, BC, Canada) in The Gambia, where blood samples were collected from 720 infants at birth. Among this cohort, 15 infants developed early-onset sepsis. The researchers employed machine learning techniques to analyze the expression of genes active at birth, seeking biological markers capable of predicting sepsis. The findings, published in eBiomedicine, indicate that the researchers identified four genes that, when combined into a 'signature', could accurately predict sepsis in newborns with a success rate of 90%.

This study presented a unique opportunity, as samples from all infants in the cohort were available on the day of their birth, allowing researchers to investigate the gene expressions in those who later developed sepsis before they exhibited any illness. Most previous studies have only reported markers detected after the infants had already fallen ill, making those findings less useful for prediction. The next phase of this research involves conducting a large prospective study to validate the predictive capability of the signature in other populations and to establish its methodology. Following this, the aim will be to develop point-of-care tools for approval by relevant regulatory bodies. The researchers hope that this genetic signature will eventually be integrated not only into PCR tests in hospitals but also into portable, point-of-care devices.

“There are point-of-care devices available that can test for gene expression, for instance, COVID-19 and influenza, with a single drop of blood. They can operate anywhere with a power source including batteries and can be used by anyone, not just trained healthcare providers,” said co-senior author Dr. Bob Hancock, professor in the UBC department of microbiology and immunology. “These portable devices could be retooled to recognize this ‘signature’ relatively easily and inexpensively.”


New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Portable Electronic Pipette
Mini 96
New
Automatic Chemiluminescence Immunoassay Analyzer
Shine i2000
Specimen Radiography System
TrueView 200 Pro
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.