We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Innovative ‘Fragmentomics’ Approach to Enable Earlier Detection of Cancer Using Smaller Blood Draws

By LabMedica International staff writers
Posted on 31 Jan 2024

When cells die, they disintegrate, releasing part of their DNA material into the bloodstream. More...

This cell-free DNA (cfDNA) contains cancer signals. The cfDNA from healthy cells breaks down into standard-sized fragments, whereas cancerous cfDNA fragments disintegrate at different locations, often in the genome's repetitive regions. Instead of searching for specific DNA mutations, which is like finding a single misarranged letter in billions of letters, researchers have developed a novel machine-learning method. This method detects variations in fragmentation patterns between cancerous and normal cfDNA in these repetitive regions of cancer. This groundbreaking technique could potentially allow for earlier cancer detection in patients through smaller blood samples, as it requires approximately eight times less blood than what is needed for whole genome sequencing.

The algorithm called Alu Profile Learning Using Sequencing (A-Plus) was developed by researchers at City of Hope (Duarte, CA, USA) and Translational Genomics Research Institute (TGen, Phoenix, AZ, USA). The researchers tested the algorithm on 7,657 samples from 5,980 individuals, 2,651 of whom were diagnosed with cancers like breast, colon and rectum, esophagus, lung, liver, pancreas, ovary, or stomach cancer. They discovered that A-Plus could identify about half of the cancers across the 11 types studied. The test proved to be highly accurate, yielding only one false positive for every 100 tests conducted.

Significantly, most of the cancer samples came from individuals with early-stage disease, who had little to no metastatic lesions at the time of diagnosis. Going forward, a clinical trial is set to begin in summer 2024 to compare the effectiveness of this fragmentomics blood testing approach against the standard-of-care in adults aged 65-75. The aim is to assess how well this biomarker panel can detect cancer at an earlier, more treatable stage.

“A huge body of evidence shows that cancer caught at later stages kills people,” said Cristian Tomasetti, Ph.D., corresponding author of the new study and director of City of Hope’s Center for Cancer Prevention and Early Detection. “This new technology gets us closer to a world where people will receive a blood test annually to detect cancer earlier when it is more treatable and possibly curable.”

“Our technique is more practical for clinical applications as it requires smaller quantities of genomic material from a blood sample,” added Kamel Lahouel, Ph.D., an assistant professor in TGen’s Integrated Cancer Genomics Division and the study’s co-first author. “Continued success in this area and clinical validation opens the door for the introduction of routine tests to detect cancer in its earliest stages.”

Related Links:
City of Hope
TGen, Phoenix


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Portable Electronic Pipette
Mini 96
New
Clinical Chemistry System
P780
New
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The study highlights the potential of cCAFs as a biomarker for early diagnosis and prognosis (H J Woo et al., Analytical Chemistry (2025). DOI: 10.1021/acs.analchem.5c02154)

Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy

Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.