We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Innovative ‘Fragmentomics’ Approach to Enable Earlier Detection of Cancer Using Smaller Blood Draws

By LabMedica International staff writers
Posted on 31 Jan 2024
Print article
Image: The innovative “fragmentomics” approach could allow doctors to identify cancer in patients sooner (Photo courtesy of Shutterstock)
Image: The innovative “fragmentomics” approach could allow doctors to identify cancer in patients sooner (Photo courtesy of Shutterstock)

When cells die, they disintegrate, releasing part of their DNA material into the bloodstream. This cell-free DNA (cfDNA) contains cancer signals. The cfDNA from healthy cells breaks down into standard-sized fragments, whereas cancerous cfDNA fragments disintegrate at different locations, often in the genome's repetitive regions. Instead of searching for specific DNA mutations, which is like finding a single misarranged letter in billions of letters, researchers have developed a novel machine-learning method. This method detects variations in fragmentation patterns between cancerous and normal cfDNA in these repetitive regions of cancer. This groundbreaking technique could potentially allow for earlier cancer detection in patients through smaller blood samples, as it requires approximately eight times less blood than what is needed for whole genome sequencing.

The algorithm called Alu Profile Learning Using Sequencing (A-Plus) was developed by researchers at City of Hope (Duarte, CA, USA) and Translational Genomics Research Institute (TGen, Phoenix, AZ, USA). The researchers tested the algorithm on 7,657 samples from 5,980 individuals, 2,651 of whom were diagnosed with cancers like breast, colon and rectum, esophagus, lung, liver, pancreas, ovary, or stomach cancer. They discovered that A-Plus could identify about half of the cancers across the 11 types studied. The test proved to be highly accurate, yielding only one false positive for every 100 tests conducted.

Significantly, most of the cancer samples came from individuals with early-stage disease, who had little to no metastatic lesions at the time of diagnosis. Going forward, a clinical trial is set to begin in summer 2024 to compare the effectiveness of this fragmentomics blood testing approach against the standard-of-care in adults aged 65-75. The aim is to assess how well this biomarker panel can detect cancer at an earlier, more treatable stage.

“A huge body of evidence shows that cancer caught at later stages kills people,” said Cristian Tomasetti, Ph.D., corresponding author of the new study and director of City of Hope’s Center for Cancer Prevention and Early Detection. “This new technology gets us closer to a world where people will receive a blood test annually to detect cancer earlier when it is more treatable and possibly curable.”

“Our technique is more practical for clinical applications as it requires smaller quantities of genomic material from a blood sample,” added Kamel Lahouel, Ph.D., an assistant professor in TGen’s Integrated Cancer Genomics Division and the study’s co-first author. “Continued success in this area and clinical validation opens the door for the introduction of routine tests to detect cancer in its earliest stages.”

Related Links:
City of Hope
TGen, Phoenix

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.