We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Handheld Diagnostic Lab Offers POC Solution for Future Pandemics

By LabMedica International staff writers
Posted on 11 Nov 2022
Print article
Image: The handheld diagnostic lab kit is capable of fully automated multiplexed and pooled testing (Photo courtesy of UCLA)
Image: The handheld diagnostic lab kit is capable of fully automated multiplexed and pooled testing (Photo courtesy of UCLA)

Using swarms of pinhead-sized magnets inside a handheld, all-in-one lab kit, researchers have developed a technology that could significantly increase the speed and volume of disease testing, while reducing the costs and usage of scarce supplies. The automated tests can be easily manufactured, deployed and performed timely at a doctor’s office, health clinic or at mass testing sites in airports and schools at the onset of any major infectious disease. The technology breakthrough could help the authorities better prepare for future pandemics by decentralizing testing and maximizing the use of resources.

The research team led by UCLA (Los Angeles, CA, USA) was motivated by the lack of equitable access to testing during the early months of the COVID-19 pandemic when only a handful of clinical laboratories were authorized to run tests. The researchers also conducted a clinical study with test samples from individuals who experienced COVID-19 symptoms. More than 100 test results using the lab kit were compared to the same samples tested for COVID-19 using polymerase chain reaction (PCR)-based molecular diagnostics performed as part of UCLA Health’s routine clinical care.

Using a circuit board that controls a set of movable, one-millimeter-sized magnetic discs known as “ferrobots” to transport samples through the diagnostic workflow of a nucleic acid amplification test (NAAT), the researchers’ ultra-sensitive lab kit was able to detect the presence of genetic material from a virus - in this case, SARS-CoV-2 that causes COVID-19. The steps to separate, sort, mix and amplify testing samples are all automated and performed at a miniaturized level inside the kit.

By designing the kit for pooled testing, the system requires much lower amounts of reagent chemicals than those needed for testing the samples individually. Up to 16 samples were combined and tested at once in the team’s study. If the pooled test showed a positive result, subsequent tests would automatically take place within the same platform until the actual positive samples were identified. This entire process took between 30 to 60 minutes, depending on whether there were positive samples. Thanks to the technology’s assay miniaturization and pooled-testing capabilities, the chemical reagent costs could be reduced by 10 to 300 times.

Aside from being able to test for several diseases simultaneously, the platform also offers precision and robust automation. For example, in a pooled-testing with 16 samples, more than 300 lab operations, including mixing and sorting, were automated by the ferrobots - that is more than 3,000 individual movements, or actuations. In their reliability studies, the researchers showed that the ferrobots could perform more than 8 million actuations without mistakes.

“Our handheld lab technology could help overcome some of the barriers of scarcity and access to tests, especially early in a pandemic, when it is most crucial to control disease spread,” said Sam Emaminejad, associate professor of electrical and computer engineering, who co-authored the study. “And beyond its potential to address issues of short supplies and high demand, it could be broadly adapted to test for many types of diseases in field and with lab-grade quality.”

“This platform’s compact design and automated handling of samples enable easy implementations of pooled testing where you can test dozens of patient samples at the same time, and all with the same materials it currently takes to test just one patient,” said Dino Di Carlo, professor of bioengineering at UCLA Samueli School of Engineering. “For example, you could test students in an entire college residence hall with just a few dozen test kits.”

Related Links:
UCLA 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.