We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

QIAGEN

Qiagen is a provider of sample and assay technologies for molecular diagnostics and applied testing, including comple... read more Featured Products: More products

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Novel Blood Test Evaluates Severity In Pulmonary Arterial Hypertension

By LabMedica International staff writers
Posted on 01 Sep 2022
Print article
Image: The QX200 System ddPCR Data digital PCR provides absolute quantification of target DNA or RNA molecules (Photo courtesy of Bio-Rad).
Image: The QX200 System ddPCR Data digital PCR provides absolute quantification of target DNA or RNA molecules (Photo courtesy of Bio-Rad).

Pulmonary Arterial Hypertension (PAH) is a rare form of pulmonary hypertension that can cause difficulty breathing, chest pain, and fatigue. The disease, whose exact cause is unknown, is estimated to affect less than 50,000 people in the USA.

PAH is characterized by progressive narrowing and blockage of the small pulmonary arteries of the lungs, strain on the right side of the heart, and eventual death from heart failure. The damage to the lung in severe cases can require lung transplantation. Patients with PAH have a high death rate, and the condition mostly affects women. Despite treatment advances, it currently has no cure.

Clinical Scientists at the National Institutes of Health Clinical Center (Bethesda, MD, USA; https://clinicalcenter.nih.gov) and their many colleagues analyzed cell-free DNA from blood samples taken from 209 adult patients, predominately women, diagnosed with PAH at two large medical centers. They compared the results to cell-free DNA (cfDNA) measured from a control group of 48 healthy volunteers without PAH at the NIH Clinical Center.

The team isolated DNA from plasma (QIAamp Circulating Nucleic Acid Kit; Qiagen, Venlo, The Netherlands; www.qiagen.com) using the Qiagen validated automated platform QIASymphony. CfDNA was extracted from plasma and quantified using a digital droplet polymerase chain reaction platform (QX200; Bio-Rad, Hercules, CA, USA; www.bio-rad.com). DNA libraries were pooled in equimolar concentrations and subjected to 2×100 bp paired-end DNA sequencing on the NovaSeq 6000 platform (Illumina, San Diego, CA, USA; www.illumina.com).

Concentrations of high-sensitivity cardiac troponin T: TnT Gen 5 STAT (Roche Diagnostics, Indianapolis, IN, USA; https://diagnostics.roche.com) and high-sensitivity C-reactive protein the hs-CRP; MULTIGENT CRP Vario (Abbott Laboratories Inc, Abbott Park, Illinois, USA; www.abbott.com) were determined in a subset of patient samples with sufficient remaining plasma to evaluate the association of cfDNA with additional clinical markers of myocardial injury and inflammation, respectively.

The investigators reported that that cfDNA was elevated in patients with PAH, and they also found that cell-free DNA concentrations increased in proportion to the severity of the disease. Patients with the highest level of cfDNA had a 3.8 times greater risk of either death or a need for lung transplantation compared to those with the lowest level of cf DNA. In one cohort, death or lung transplant occurred in 14/54, 23/53, and 35/54 patients in the lowest, middle, and highest cfDNA tertiles, respectively. CfDNA concentrations derived from erythrocyte progenitor cells, cardiac myocytes, and vascular endothelium were greater in patients with PAH with high-risk versus low-risk.

Sean Agbor-Enoh, MD, PhD, study co-author and chief of the NHLBI’s Laboratory of Applied Precision Omics, said “Here we’re proposing a one-time test where you collect a vial of blood from a patient and use that to predict survival. We’re very encouraged by the early results.”

The authors concluded that circulating cfDNA is elevated in patients with PAH, correlates with disease severity, and predicts worse survival. Results from cfDNA methylation analyses in patients with PAH are consistent with prevailing paradigms of disease pathogenesis. The study was published on August 25, 2022 in the journal Circulation (www.ahajournals.org).

 

 

New
Gold Supplier
SARS-CoV-2 Assay
INgezim COVID 19 SPIKE CROM
New
Human Anti-S. Cerevisiae Antibodies Test
ASCA-CHEK
New
Dual-Channel Optical Coagulation Analyzer
Sensa2
New
POC Pathogen Detection & Gene Expression System
Sal6830 Mobile Workstation

Print article
IIR Middle East

Channels

Technology

view channel
Image: OneDraw Blood Collection Device significantly reduces obstacles for drawing blood (Photo courtesy of Drawbridge Health)

Near Pain-Free Blood Collection Technology Enables High-Quality Testing

Blood tests help doctors diagnose diseases and conditions such as cancer, diabetes, anemia, and coronary heart disease, as well as evaluate organ functionality. They can also be used to identify disease... Read more

Industry

view channel
Image: The global infectious disease IVD market is expected to hit USD 57 billion by 2030 (Photo courtesy of Pexels)

Global Infectious Disease IVD Market Dominated by Molecular Diagnostics Technology

The global infectious disease in vitro diagnostics (IVD) market stood at USD 113.7 billion in 2021 and is expected to grow at a CAGR of -7.41% from 2022 to 2030 to hit around USD 56.89 billion by 2030,... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.