We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
23 Jan 2021 - 27 Jan 2021
Virtual Venue
24 Feb 2021 - 28 Feb 2021
Virtual Venue

Elevated Galectin-1 Levels in Sepsis Reflect Danger of Cytokine Storm Development

By LabMedica International staff writers
Posted on 11 Jan 2021
Print article
Image: Molecular model of the galectin-1 protein (Photo courtesy of Wikimedia Commons)
Image: Molecular model of the galectin-1 protein (Photo courtesy of Wikimedia Commons)
Increased concentration of the beta-galactoside-binding protein “galectin-1” in sera from human sepsis patients has been found to be a novel biomarker for cytokine storms that may occur in cases with runaway sepsis.

Cytokine storms form during sepsis due to the overreaction of the body to an infection. Cells damaged as a result of infection or injury release cytokines and other danger molecules called alarmins that can generate a cytokine storm.

Damage-associated molecular patterns (DAMPs), also known as danger-associated molecular patterns, danger signals, and alarmin, are host biomolecules that can initiate and perpetuate a noninfectious inflammatory response. For example, they are released from damaged or dying cells and activate the innate immune system by interacting with pattern recognition receptors (PRRs). In contrast, pathogen-associated molecular patterns (PAMPs) initiate and perpetuate the infectious pathogen-induced inflammatory response. DAMPs are key determinants that shape the aftermath of inflammatory cell death. However, the identity and function of the individual DAMPs released are poorly defined.

Investigators at the University of Connecticut (Storrs, USA) and their colleagues sought to the determine the identity and function of individual DAMPs released in response to cytosolic lipopolysaccharide (LPS).

Galectin-1 release is a common feature of inflammatory cell death and galectin-1 promotes inflammation and plays a detrimental role in LPS-induced lethality. The investigators found that sepsis patients had higher levels of galectin-1 than those found in non-sepsis critical care patients or in healthy individuals. On the molecular level, galectin-1 inhibition of CD45 (Protein tyrosine phosphatase, receptor type, C) seemed to be the cause of its unfavorable role in promoting cytokine storms.

The galectin-1 study was published in the January 4, 2021, online edition of the journal Nature Immunology.

Related Links:
University of Connecticut

Print article



view channel
Image: uPath HER2 Dual ISH image analysis for breast cancer (Photo courtesy of Roche)

Roche Launches Digital Pathology Image Analysis Algorithms for Precision Patient Diagnosis in Breast Cancer

Roche (Basel, Switzerland) has announced the CE-IVD launch of its automated digital pathology algorithms, uPath HER2 (4B5) image analysis and uPath Dual ISH image analysis for breast cancer to help determine... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.