We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Highly Sensitive Liquid Biopsy Technique Brings Personalized Cancer Monitoring a Step Closer

By LabMedica International staff writers
Posted on 29 Jun 2020
A modified liquid biopsy method enables detection of circulating tumor DNA (ctDNA) with much greater sensitivity than previously used techniques and demonstrates the potential to revolutionize all aspects of cancer care, from early detection to personalized treatment and monitoring.

While ctDNA can be used to monitor cancer dynamics noninvasively, detecting it can be challenging in patients with low-volume or residual disease, where the plasma contains very few tumor-derived DNA fragments. More...
Investigators at the University of Cambridge (United Kingdom) and their collaborators sought to develop a method for ctDNA detection with greatly increased sensitivity. To this end, they showed that sensitivity for ctDNA detection in plasma could be improved by using the INtegration of VAriant Reads (INVAR) pipeline. This technique combined custom error-suppression methods and signal-enrichment approaches based on biological features of ctDNA to analyze hundreds to thousands of mutations.

Current liquid biopsies search for around 10-20 mutations and up to around 100 in blood samples. Thus, they are able to detect ctDNA to levels on the range of one mutant molecule amongst 30,000 fragments of DNA. In contrast, the INVAR technique searched for hundreds and sometimes thousands of mutations in each blood sample, routinely achieving a sensitivity of one mutant molecule per 100,000, and under optimal conditions reached a level of ctDNA measured in parts per million.

The investigators applied INVAR to custom hybrid-capture sequencing data from 176 plasma samples from 105 patients with melanoma, lung, renal, glioma, and breast cancer across both early and advanced disease. By integrating signal across a median of more than 105 informative reads, ctDNA was routinely quantified to one mutant molecule per 100,000, and in some cases with high tumor mutation burden and/or plasma input material, to parts per million. This resulted in median area under the curve (AUC) values of 0.98 in advanced cancers and 0.80 in early-stage and challenging settings for ctDNA detection.

Senior author Dr. Nitzan Rosenfeld, senior group leader in cancer research at the University of Cambridge, said, “Personalized tests that can detect if cancer is still present, or find it early if it is returning, are now being tested in clinical trials. Whilst this may be several years away from clinical use, our research shows what is possible when we push such approaches to an extreme. It demonstrates that the levels of sensitivity we have come to accept in recent years in relation to testing for ctDNA can be dramatically improved. At present this is still experimental, but technology is advancing rapidly, and in the near future tests with such sensitivity could make a real difference to patients.”

The INVAR approach was described in the June 17, 2020 online edition of the journal Science Translational Medicine.

Related Links:
University of Cambridge


Gold Member
Serological Pipets
INTEGRA Serological Pipets
Portable Electronic Pipette
Mini 96
Autoimmune Disease Diagnostic
Chorus ds-DNA-G
New
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.