Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Unexplained Liver Disease Diagnosed by Whole-Exome Sequencing

By LabMedica International staff writers
Posted on 29 Apr 2019
A recent paper promoted the use of whole-exome sequencing (WES) to detect and diagnose cases of unexplained liver disease.

Chronic liver disease is a significant health problem affecting more than four million people and leading to over 40,000 deaths annually in the United States alone. More...
It often remains undiagnosed for many years until overt manifestations of chronic liver disease emerge and liver injury has already reached catastrophic proportions.

Adult patients suffering from unexplained liver disease represent an understudied and underserved population, and, furthermore, the use of whole-exome sequencing (WES) to diagnose the disease remains poorly studied.

To correct this deficiency, investigators at Yale School of Medicine (New Haven, CT, USA) performed WES and deep phenotyping of 19 unrelated adult patients with idiopathic liver disease following an ambiguous conventional work-up performed by a hepatologist. WES is a technique for sequencing all the approximately 20,000 human protein-coding genes. It is suitable for both clinical use and translational research studies.

The investigators reported that in five cases, genomic analysis led to diagnosis and informed treatment and management of the disease. For example, in one case, molecular diagnosis enabled initiation of leptin replacement therapy that restored liver function and decreased daily insulin requirements. In two of the cases, a mitochondrial disorder due to a homozygous pathogenic variant enabled initiation of disease preventive measures including supplementation with antioxidants.

"This study provides evidence that a subset of adult patients who suffer from liver disease of indeterminate etiology with or without other comorbidities harbor an underlying Mendelian disorder, which may be unrecognized during their entire childhood until genetic testing is performed," said senior author Dr. Silvia Vilarinho, assistant professor of medicine and pathology at Yale School of Medicine. "Our data highlight the importance of using WES in the investigation of liver disease of unknown cause so that we may start developing an understanding of what clinical presentations or diseases are genetic and may remain undiagnosed until adulthood."

"Advances in human genomics through next generation sequencing technology have created an unprecedented opportunity for genetic investigation and clinical diagnosis," said Dr. Vilarinho. "However, to date, most studies that investigate the use of next generation sequencing technologies in diagnosis and personalized medical care have been performed in either pediatric or cancer patients. The clinical utility of these approaches for a broader spectrum of diseases among adults remains poorly studied."

The WES study was described in the April 1, 2019, online edition of the Journal of Hepatology.

Related Links:
Yale School of Medicine


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gel Cards
DG Gel Cards
New
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: An innovative deep learning model can accurately predict MSI tumor and immune checkpoint inhibitor responsiveness (Photo courtesy of Jae-Ho Cheong/Yonsei University College of Medicine)

AI Model Accurately Predicts MSI Tumor and Immune Checkpoint Inhibitor Responsiveness

One in three people is expected to develop cancer in their lifetime, and a key factor in patient prognosis is the tumor’s microsatellite status—whether it is stable or shows microsatellite instability-high (MSI-H).... Read more

Pathology

view channel
Image: Virtual staining of label-free tissue in imaging mass spectrometry (Photo courtesy of Ozcan Lab/UCLA)

Deep Learning Advances Imaging Mass Spectrometry with Virtual Histological Detail

Imaging mass spectrometry (IMS) is a powerful technique that can map thousands of molecular species in biological tissues with exceptional chemical specificity. However, IMS is hindered by relatively low... Read more

Industry

view channel
Image: Alzheimer’s Association has released its first clinical practice guideline for blood-based biomarker tests (Photo courtesy of Alzheimer’s Association)

New Clinical Guidelines Recommend Use of Blood Tests Instead of Brain Scans for Alzheimer’s Diagnosis

Alzheimer’s disease is a progressive neurodegenerative condition that remains challenging to diagnose early and accurately, particularly in individuals with cognitive impairment. Despite the availability... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.