We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Epigenomic Method Developed to Detect Pancreatic Cancer

By LabMedica International staff writers
Posted on 24 Oct 2018
Pancreatic cancers are typically diagnosed at late stage where disease prognosis is poor as exemplified by a 5-year survival rate of 8.2%. More...
Earlier diagnosis would be beneficial by enabling surgical resection or earlier application of therapeutic regimens.

A non-invasive liquid biopsy assay that tracks epigenetic modifications linked to gene regulation and pancreatic cancer pathogenesis in circulating cell-free DNA (cfDNA) in patient blood samples has been developed and a link has been uncovered between an epigenomic signal in cfDNA and pancreatic cancer in patients.

A team of scientists working with Bluestar Genomics (San Francisco, CA, USA) investigated the detection of pancreatic ductal adenocarcinoma (PDAC) in a non-invasive manner by interrogating changes in 5-hydroxymethylation cytosine status (5hmC) of circulating cell free DNA in the plasma. The team first collected and isolated plasma samples from a cohort of 51 pancreatic cancer patients and 41 non-cancer controls, then enriched for and sequenced regions of interest.

The team used use a method called "click chemistry" to modify hydroxymethyl groups on cytosine by attaching biotin tags. They then enriched the biotinylated DNA fragments by using streptavidin-coated magnetic beads, which enables an effective "pull-down" assay to separate DNA molecules that contain 5hmC from those that do not contain the biomarker. The team then sequences the fragments using a NextSeq 550 instrument, generating the data that can be used to derive an epigenetic signature.

After performing a set of regression models on the sequenced data, the investigators found that PDAC patients possessed thousands of genes with different epigenomic signatures, including areas of enrichment and absence of 5hmC, compared to non-diseased individuals. By filtering the genes with the most differentially hydroxymethylated states, the team found genes that were previously linked to pancreas development or pancreatic cancer.

The team validated the method on external cohorts from previous studies that contained pancreatic cancer and healthy samples, producing an area under the curve of 74% to 97%. The authors of the study believe that sub-partitioning PDAC and non-cancer individuals into different categories will improve detection and classification of the disease. The study was posted on September 26, 2018, on the preprint server BioRxiv.

Related Links:
Bluestar Genomics


Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
Gold Member
Hybrid Pipette
SWITCH
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: Development of targeted therapeutics and diagnostics for extrapulmonary tuberculosis at University Hospital Cologne (Photo courtesy of Michael Wodak/Uniklinik Köln)

Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis

Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.