We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Enzyme Boosts Power of Liquid Biopsies to Detect Cancers

By LabMedica International staff writers
Posted on 29 Nov 2017
A new tool has been developed for liquid biopsy that can detect RNA biomarkers from cancer cells in a patient's blood much more accurately and completely than other existing methods. More...
This could soon provide doctors with a more complete picture of an individual's disease.

Many current liquid biopsies can detect DNA in blood; others can detect RNA, although they tend to miss many key RNA biomarkers and misinterpret others. An ancient enzyme detects the full range of RNAs with much higher accuracy, which is helpful for understanding both the general profile of a disease such as cancer and specific information about its activity in a particular patient.

Scientists at the University of Texas at Austin (TX, USA) uncovered for the first time the molecular structure of this RNA-detecting enzyme in action, offering clues about how it works and how it can be improved for use in medical tests. Both DNA and RNA bear genetic information useful for understanding a disease state such as cancer. Bacterial group II intron reverse transcriptases (RTs) function in both intron mobility and RNA splicing and are evolutionary predecessors of retrotransposon, telomerase, and retroviral RTs as well as the spliceosomal protein Prp8 in eukaryotes. The team determined a crystal structure of a full-length thermostable group II intron RT in complex with an RNA template-DNA primer duplex and incoming deoxynucleotide triphosphate (dNTP).

Thermostable Group II Intron Reverse Transcriptases (TGIRTs) are ancient enzymes that date to a time when genetic information was stored mainly in RNA, but life was transitioning to DNA. Another major finding of the study was that TGIRT enzymes are remarkably similar to enzymes from RNA viruses, which copy RNA. This highlights the potential evolutionary role of TGIRTs and other closely related enzymes in the evolution of present-day organisms, which use DNA for genetic material.

Alan M. Lambowitz, PhD. a professor of Cellular and Molecular Biology and lead investigator, said, “DNA biomarkers are static. They provide information about mutations that cause a disease, but they don't provide information about the effect of these mutations on cellular processes, which can differ in different individuals. Monitoring cellular RNAs provides a snapshot of exactly what is happening in diseased tissue, such as a tumor, at a particular time. The method can be used to monitor day-to-day progression of the disease and response to treatment and to predict how different individuals with the same cancer will respond to different treatments.” The study was published on November 16, 2017, in the journal Molecular Cell.

Related Links:
University of Texas at Austin


Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
Portable Electronic Pipette
Mini 96
8-Channel Pipette
SAPPHIRE 20–300 µL
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The tool enables scientists to track real-time fluctuations in T cell function with unprecedented speed and precision (Photo courtesy of Shutterstock)

Luminescent Probe Measures Immune Cell Activity in Real Time

The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more

Industry

view channel
Image: The collaboration supports clinical validation and regulatory submissions of the new T1D 4-plex assay on Revvity’s GSP instrument (Photo courtesy of Revvity)

Revvity and Sanofi Collaborate on Program to Revolutionize Early Detection of Type 1 Diabetes

Type 1 diabetes (T1D) is a lifelong autoimmune condition in which the immune system destroys the pancreas’s insulin-producing beta cells, leading to dependence on insulin therapy. Early detection is critical... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.