We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Enzyme Boosts Power of Liquid Biopsies to Detect Cancers

By LabMedica International staff writers
Posted on 29 Nov 2017
Print article
Image: An ancient bacterial enzyme (grey) crawls along a tangled strand of RNA (orange), creating a complimentary strand of DNA (blue). This enzyme, called GsI-IIC RT, and part of a group of enzymes known as TGIRTs, have novel properties that make it easier to detect RNA biomarkers from cancer and other disorders (Photo courtesy of the University of Texas at Austin).
Image: An ancient bacterial enzyme (grey) crawls along a tangled strand of RNA (orange), creating a complimentary strand of DNA (blue). This enzyme, called GsI-IIC RT, and part of a group of enzymes known as TGIRTs, have novel properties that make it easier to detect RNA biomarkers from cancer and other disorders (Photo courtesy of the University of Texas at Austin).
A new tool has been developed for liquid biopsy that can detect RNA biomarkers from cancer cells in a patient's blood much more accurately and completely than other existing methods. This could soon provide doctors with a more complete picture of an individual's disease.

Many current liquid biopsies can detect DNA in blood; others can detect RNA, although they tend to miss many key RNA biomarkers and misinterpret others. An ancient enzyme detects the full range of RNAs with much higher accuracy, which is helpful for understanding both the general profile of a disease such as cancer and specific information about its activity in a particular patient.

Scientists at the University of Texas at Austin (TX, USA) uncovered for the first time the molecular structure of this RNA-detecting enzyme in action, offering clues about how it works and how it can be improved for use in medical tests. Both DNA and RNA bear genetic information useful for understanding a disease state such as cancer. Bacterial group II intron reverse transcriptases (RTs) function in both intron mobility and RNA splicing and are evolutionary predecessors of retrotransposon, telomerase, and retroviral RTs as well as the spliceosomal protein Prp8 in eukaryotes. The team determined a crystal structure of a full-length thermostable group II intron RT in complex with an RNA template-DNA primer duplex and incoming deoxynucleotide triphosphate (dNTP).

Thermostable Group II Intron Reverse Transcriptases (TGIRTs) are ancient enzymes that date to a time when genetic information was stored mainly in RNA, but life was transitioning to DNA. Another major finding of the study was that TGIRT enzymes are remarkably similar to enzymes from RNA viruses, which copy RNA. This highlights the potential evolutionary role of TGIRTs and other closely related enzymes in the evolution of present-day organisms, which use DNA for genetic material.

Alan M. Lambowitz, PhD. a professor of Cellular and Molecular Biology and lead investigator, said, “DNA biomarkers are static. They provide information about mutations that cause a disease, but they don't provide information about the effect of these mutations on cellular processes, which can differ in different individuals. Monitoring cellular RNAs provides a snapshot of exactly what is happening in diseased tissue, such as a tumor, at a particular time. The method can be used to monitor day-to-day progression of the disease and response to treatment and to predict how different individuals with the same cancer will respond to different treatments.” The study was published on November 16, 2017, in the journal Molecular Cell.

Related Links:
University of Texas at Austin

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.