Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




MicroRNA-based Assay Proposed for Early Detection of Cancer

By LabMedica International staff writers
Posted on 13 Nov 2017
Cancer researchers have proposed using a network of circulating microRNAs to diagnose ovarian carcinoma at a stage earlier than currently possible.

MicroRNAs (miRNAs) are a family of noncoding 19- to 25-nucleotide RNAs that regulate gene expression by targeting messenger RNAs (mRNAs) in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. More...
Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

Screening techniques are currently not available for early stage ovarian cancer, making it challenging to diagnose the disease. As recent studies have suggested a role for non-coding RNAs in epithelial ovarian cancer (EOC), investigators at Brigham and Women's Hospital (Boston, MA, USA) and Dana-Farber Cancer Institute (Boston, MA, USA) evaluated the diagnostic potential for a serum miRNA neural network for detection of ovarian cancer.

The investigators combined small RNA sequencing from 179 human serum samples with neural network analysis to produce a miRNA algorithm for diagnosis of EOC. The model significantly outperformed CA125 testing and functioned well regardless of patient age, histology, or stage. Among 454 patients with various diagnoses, the miRNA neural network had 100% specificity for ovarian cancer. After using 325 samples to adapt the neural network to qPCR measurements, the model was validated using 51 independent clinical samples, with a positive predictive value of 91.3% and negative predictive value of 78.6%. Biologic relevance was tested using in situ hybridization on 30 pre-metastatic lesions, showing intratumoral concentration of relevant miRNAs.

"The key is that this test is very unlikely to misdiagnose ovarian cancer and give a positive signal when there is no malignant tumor. This is the hallmark of an effective diagnostic test," said senior author Dr. Dipanjan Chowdhury, chief of the division of radiation and genomic stability at Dana-Farber Cancer Institute.

The miRNA test for early detection of ovarian cancer was described in the October 31, 2017, online edition of the journal eLife.

Related Links:
Brigham and Women's Hospital
Dana-Farber Cancer Institute


New
Gold Member
Automatic CLIA Analyzer
Shine i9000
Portable Electronic Pipette
Mini 96
Human Estradiol Assay
Human Estradiol CLIA Kit
Pipette
Accumax Smart Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: When assessing the same lung biopsy sample, research shows that only 18% of pathologists will agree on a TCMR diagnosis (Photo courtesy of Thermo Fisher)

Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection

Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.