We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Researchers Find Additional Genes Responsible for Foul Odor Disorder

By LabMedica International staff writers
Posted on 28 Feb 2017
Print article
Image: By comparing sensory, metabolic, and genetic data from patients with trimethylaminura (TMAU), researchers found that the cause of TMAU in some patients is likely due to mutations in genes other than FMO3 (Photo courtesy of the Monell Center).
Image: By comparing sensory, metabolic, and genetic data from patients with trimethylaminura (TMAU), researchers found that the cause of TMAU in some patients is likely due to mutations in genes other than FMO3 (Photo courtesy of the Monell Center).
A study using whole exome sequencing of patients with trimethylaminura (TMAU) may to lead to additional diagnostic criteria and therapeutic targets for this rare metabolic disorder, which until now has been generally attributed solely to mutations in the FMO3 gene.

The study, led by researchers from the Monell Center, provides new insight into genetically transmitted TMAU, a metabolic disorder due to accumulation of trimethylamine (TMA) in people with impaired TMA metabolism. TMAU is classified as a “rare disease” in that it affects less than 200,000 people in the United States, but its actual incidence remains uncertain in part due to inconclusive diagnostic techniques.

“Our findings may bring some reassurance to people who report fish-like odor symptoms but do not have mutations in the FMO3 gene,” said co-senior author Danielle R. Reed, PhD, of Monell Center.

The socially and psychologically distressing odor symptoms result from the buildup TMA produced naturally from many foods rich in choline (e.g. eggs, certain legumes, wheat germ, saltwater fish, organ meats). TMA, which has a foul odor reminiscent of rotting fish, normally is metabolized by the liver enzyme flavin-containing monooxygenase 3 (FMO3) into an odorless metabolite. People with TMAU are unable to metabolize TMA, which accumulates and is excreted from the body in urine, sweat, saliva, and breath.

Some people who report having the fish odor symptoms do not have severely disruptive mutations in the FMO3 gene. This led the researchers to suspect that testing for FMO3 mutations is likely insufficient in that other genes may also contribute to the disorder. In the study, they combined exome analysis with computer modeling to probe for additional TMAU-related genes. They compared sensory, metabolic, and genetic data from 10 individuals randomly selected from 130 subjects previously evaluated for TMAU at Monell Center. The metabolic test measured production of TMA following ingestion of choline. Each subject’s body odor was evaluated by a trained sensory panel before and after the choline challenge test.

Although the choline challenge test confirmed a diagnosis of TMAU by revealing a high level of urinary TMA in all 10 subjects, genetic analyses revealed that the FMO3 gene appeared to be normal in 4 of the 10. Additional analyses revealed defects in several other genes that could contribute to the inability to metabolize TMA.

“These new genes may help us better understand the underlying biology of the disorder and perhaps even identify treatments,” said Dr. Reed.

Although all of the subjects reported frequent fish-odor symptoms, none was judged by the sensory panel to have a fish-like odor at the time of the choline challenge. TMAU’s odor symptoms can occur in irregular and seemingly unpredictable intervals, which often adds to the difficulty of diagnosis.

Co-senior author George Preti, PhD, of Monell, commented on the diagnostic implications of the combined findings: “Regardless of either the patient’s current sensory presentation or FMO3 genetics, the choline challenge test will confirm the TMA accumulation that reveals the presence of the disorder.”

The researchers would like to repeat the genetic analyses in a larger cohort of TMAU patients without FMO3 mutations to investigate which other genes are involved in the disorder. “Such information may identify additional odorants produced by TMAU-positive patients, and inform the future development of gene-based therapies,” said Dr. Preti.

The study, by Guo Y et al, was published February 15, 2017, in the journal BMC Medical Genetics.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.