Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Gene Sets Identified May Predict Response to RA Therapies

By Michal Siman-Tov
Posted on 22 Nov 2016
A blood biomarkers search has identified 3 gene expression signatures that helped predict which patients were more likely to respond to tumor necrosis factor inhibitors (TNFi) or B-cell depletion therapies in patients with moderate to severe rheumatoid arthritis (RA). More...
The findings were presented at the 2016 ACR/ARHP Annual Meeting (Washington, DC, USA) of the American College of Rheumatology (Atlanta, GA, USA) and its Association of Rheumatology Health Professionals.

Drawing on data from the ORBIT study, a randomized, controlled trial of RA patients in the UK, researchers looked for gene expression markers that would help predict responses to either TNFi drugs or the B-cell therapy rituximab, or both.

The ORBIT data “showed that patients who have seropositive RA are just as likely to respond to rituximab therapy when compared to anti-TNF therapy,” said co-lead-author Duncan Porter, MD, honorary associate professor at Queen Elizabeth University Hospital (Glasgow, Scotland), “However, a significant proportion of patients failed to respond to their first biologic drug, but responded when they were switched to the alternative. If we could identify markers in the blood that predicted which drug patients were most likely to respond to, that would allow us to choose the best treatment for that patient at the start, rather than rely on a trial-and-error approach.”

Dr. Porter and fellow researchers sequenced the RNA from the peripheral blood of 241 RA patients recruited for the ORBIT study, after first depleting ribosomal and globin RNA. They used 70% of the samples to develop response-prediction models, and reserved 30% for validation. Clinical response to the therapies was defined as a drop in DAS28-ESR (disease activity score) of 1.2 units between the baseline and at 3 months. They used multiple machine-learning tools to predict general responsiveness and differential responses to TNFi and rituximab. They also used 10-fold cross-validation to train the models for responsiveness, and then tested these on the validation samples as well.

Using support vector machine recursive feature elimination, the researchers identified 3 gene expression signatures that predicted therapy responses: 8 genes predicted general responsiveness to both TNFi and rituximab, 23 genes predicted responsiveness to TNFi, and 23 genes predicted responsiveness to rituximab.

The researchers also tested their prediction models on the validation set, and this resulted in ROC (receiver operating characteristic) plot points with an AUC (area under the curve) of 91.6% for general responsiveness, 89.7% for TNFi response, and 85.7% for rituximab response.

“There are indeed gene expression markers that predict drug-specific response,” said Dr. Porter, “If confirmed, this will allow stratification of patients into groups more likely to respond to one drug rather than another. This would lead to higher response rates, and reduced likelihood of receiving a trial of an ineffective drug. Because ineffective treatment is associated with pain, stiffness, disability, and reduced quality of life, this will lead to better patient care.”

“The findings need to be confirmed using targeted RNA sequencing, or internal validation, and then tested in a new cohort of patients, or external validation. Ultimately, a commercial testing kit would be developed to allow clinicians to test patients before they receive treatment,” said Dr. Porter.

Related Links:
American College of Rheumatology
Queen Elizabeth University Hospital


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Portable Electronic Pipette
Mini 96
8-Channel Pipette
SAPPHIRE 20–300 µL
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: Private equity firms Blackstone and TPG have joined forces to acquire Hologic in a major healthcare deal (Photo courtesy of Hologic)

Hologic to be Acquired by Blackstone and TPG

Hologic (Marlborough, MA, USA) has entered into a definitive agreement to be acquired by funds managed by Blackstone (New York, NY, USA) and TPG (San Francisco, CA, USA) in a transaction valued at up to... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.