Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Pioneering Method Rapidly Identifies Specific Pathogenic Strains

By LabMedica International staff writers
Posted on 25 Jul 2013
A statistical framework called Pathoscope has been created to identify pathogenic genetic sequences from infected tissue samples.

This unique approach can accurately discriminate between closely related strains of the same species with little coverage of the pathogenic genome. More...
The method also can determine the complete composition of known pathogenic and benign organisms in a biological sample.

Collaborating scientists from Boston University School of Medicine (MA, USA) and George Washington University (GWU; Washington DC, USA) have described an accurate and efficient approach to analyze next-generation sequence data for species identification and strain attribution that capitalizes on a Bayesian statistical framework, implemented in the new software package Pathoscope v1.0. The approach accommodates information on sequence quality, mapping quality, and provides posterior probabilities of matches to a known database of reference genomes.

The Pathoscope method will be relevant in a broad range of scenarios. In hospitals, this sequencing method will allow for rapid screening of thousands of infectious pathogens simultaneously, while being sensitive enough to monitor disease outbreaks caused by specific pathogenic strains. The approach was demonstrated by application to next-generation DNA sequence data from a recent outbreak of Escherichia coli (O104:H4) in Europe. The outbreak resulted in a number of deaths that may have been prevented by an early identification of the affecting pathogen. No other method can accurately identify multiple species or substrains in such a direct and automatic way. Current methods, such as the standard polymerase chain reaction detection or microscope observation, are often imperfect and time-consuming.

Evan Johnson, PhD, the principal investigator, said, “Pathoscope is like completing a complex jigsaw puzzle. Instead of manually assembling the puzzle, which can take days or weeks of tedious effort, we use a statistical algorithm that can determine how the picture should look without actually putting it together. Our method can characterize a biological sample faster, more accurately and in a more automated fashion than any other approach out there.” The study was published on July 10, 2013, in the journal Genome Research.

Related Links:
Boston University School of Medicine
George Washington University



Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Portable Electronic Pipette
Mini 96
New
Human Estradiol Assay
Human Estradiol CLIA Kit
New
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: Erythrocyte Sedimentation Rate Sample Stability (Photo courtesy of ALCOR Scientific)

ESR Testing Breakthrough Extends Blood Sample Stability from 4 to 28 Hours

Erythrocyte sedimentation rate (ESR) is one of the most widely ordered blood tests worldwide, helping clinicians detect and monitor infections, autoimmune conditions, cancers, and other diseases.... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.