We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood

By LabMedica International staff writers
Posted on 31 Jan 2025

Pneumonia and lower-respiratory-tract infections (LRTIs) are among the top causes of illness and death globally, particularly in vulnerable populations such as the elderly, young children, and immunocompromised individuals. More...

One of the major challenges in diagnosing pneumonia is the difficulty in obtaining an appropriate sample, and frequently, no pathogen is identified. Without a clear microbiological diagnosis, broad-spectrum antibiotics are typically administered, which increases the risk of antibiotic resistance and poor patient outcomes if the wrong antibiotics are chosen. The absence of rapid and accurate diagnostic tools only worsens this situation, hindering the ability to provide tailored treatments and leading to the overuse of antibiotics. Researchers are now exploring the possibility of detecting bacterial pneumonia directly from blood samples to improve access to LRTI testing.

Rhode Island Hospital (Providence, RI, USA) has been awarded USD 1 million by Combating Antibiotic-Resistant Bacteria Biopharmaceutical Accelerator, CARB-X, Boston, MA, USA) to develop a polymerase chain reaction (PCR) method informed by RNA sequencing to detect bacterial pneumonia directly from whole blood. CARB-X is a global non-profit collaboration focused on supporting early-stage research and development of antibacterial therapies to combat the growing problem of antibiotic resistance. The aim is to detect pneumonias caused by Staphylococcus aureus, Pseudomonas aeruginosa, and Haemophilus influenzae, using whole blood samples, making it less invasive compared to traditional methods that require samples from the airways, such as bronchoscopy or deep suctioning.

This simplified approach, involving a needle-stick blood collection from the arm, has the potential to expand access to testing and streamline current LRTI testing methods, enabling testing at primary care centers around the world instead of just tertiary care settings. Unlike traditional microbiological tests, this method will not require specimen culturing, providing results in just four hours. Targeting RNA ensures that the infection is active, as RNA degrades much faster than DNA, lasting only minutes to hours when sourced from bacteria. This technique immediately stabilizes the RNA for testing, and because it targets RNA, it identifies bacteria actively producing resistance proteins, rather than simply detecting bacteria that may carry genes for resistance.

“The support from CARB-X to focus on developing a direct from blood diagnostic for lower-respiratory-tract infections expands our current NIH supported work creating a direct from blood, culture independent, diagnostic for pathogens causing sepsis targeting RNA from the bacteria using RNA sequencing data form patients,” said Sean Monaghan, MD, surgeon at Rhode Island Hospital.

“This innovative diagnostic approach holds the potential to improve access to testing for lower-respiratory-tract infections, including pneumonia, enabling clinicians to make faster, more informed decisions and reduce the use of broad-spectrum antibiotics,” added Erin Duffy, PhD, Chief of R&D and CARB-X. “By supporting Rhode Island Hospital’s work, CARB-X is learning whether alternative sample types in detecting LRTIs is promising for future product development.”

Related Links:
Rhode Island Hospital
CARB-X


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Ultrasonic Cleaner
UC 300 Series
New
Chlamydia Trachomatis Assay
Chlamydia Trachomatis IgG
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: AI-analyzed images from the FDM microscope show platelet clumps in motion (Photo courtesy of Hirose et al CC-BY-ND)

AI Microscope Spots Deadly Blood Clots Before They Strike

Platelets are small blood cells that act as emergency responders in the body, rushing to areas of injury to help stop bleeding by forming clots. However, sometimes platelets can overreact, leading to complications.... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.