We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

New Method to Reveal Bacterial Reaction to Antibiotics in Five Minutes Could Help Create Rapid Molecular Test

By LabMedica International staff writers
Posted on 24 May 2023
Print article
Image: New method reveals bacterial reaction to antibiotics within minutes (Photo courtesy of Freepik)
Image: New method reveals bacterial reaction to antibiotics within minutes (Photo courtesy of Freepik)

Severely sick patients suffering from bacterial infections often require immediate treatment to prevent serious health complications, making it vital for physicians to quickly identify the appropriate antibiotic. However, existing approaches to determining antibiotic resistance can involve extensive periods, sometimes hours or even days. This has led to the frequent prescription of broad-spectrum antibiotics, heightening the risk of antibiotic resistance. Now, a simple method has been developed that can detect bacterial response to antibiotics within just five minutes.

Researchers at Karolinska Institutet (Solna, Sweden) set out to reduce the unwarranted use of antibiotics by devising a rapid method to assess how bacteria react to different environmental conditions, including antibiotic administration. They developed the 5PSeq method, which relies on sequencing the messenger RNA (mRNA) that is broken down by the bacteria as they synthesize proteins. The researchers employed the 5PSeq method to examine mRNA breakdown intermediates in isolated species and complex microbiomes. They tested the method on 96 bacterial species from diverse phyla in complex clinical samples, such as fecal, gut, and vaginal samples, as well as compost samples. In a matter of minutes, the researchers were able to determine whether the bacteria were reacting to the antibiotic treatment; the effect was most noticeable after about half an hour.

By utilizing metadegradome sequencing - parallel analysis of RNA ends - the team characterized 5′P mRNA decay intermediates in all 96 species, including Bacillus subtilis, Escherichia coli, Synechocystis spp., and Prevotella copri. They discovered co-translational mRNA degradation to be common among bacteria and generated a degradome atlas for the 96 species, facilitating the further study of RNA degradation mechanisms in bacteria. In addition to measuring antibiotic resistance, the method can be employed to help scientists understand how bacteria manage diverse environmental pressures, and how they interact both with each other and with their hosts. The researchers plan to continue investigating complex intestinal samples to gain deeper insights into the interactions of bacterial communities in the gut and their effects on human health. The aim is to refine the method and develop a rapid molecular test for clinical application.

“We demonstrate that metadegradome sequencing provides fast, species-specific posttranscriptional characterization of responses to drug or environmental perturbations,” the researchers wrote. “Our work paves the way for the application of metadegradome sequencing to investigation of posttranscriptional regulation in unculturable species and complex microbial communities.”

Related Links:
Karolinska Institutet 

Unit-Dose Twist-Tip BFS
Gold Supplier
High-Density Lipoprotein Containing Cholesterol Assay
HDL-c direct FS
New
Cardiac Test
ImmunTech Cardiac Triple Test
New
IFA Automation Solution
dIFine 30 System

Print article

Channels

Clinical Chem.

view channel
Image: Electrochemical cells etched by laser on wooden tongue depressor measure glucose and nitrite in saliva (Photo courtesy of Analytical Chemistry)

Biosensor-Fabricated Wooden Tongue Depressor Measures Glucose and Nitrite in Saliva

Physicians often use tongue depressors to examine a patient's mouth and throat. However, it is hard to imagine that this simple wooden tool could actively assess a patient's health. This idea has led to... Read more

Molecular Diagnostics

view channel
Image: New algorithm can predict diabetic kidney disease (Photo courtesy of Freepix)

AI Algorithm Predicts Diabetic Kidney Disease through Blood Tests

Diabetes is globally recognized as the main contributor to kidney failure. Notable advancements have been made in devising treatments for kidney disease in diabetic patients. Yet, evaluating an individual's... Read more

Hematology

view channel
Image: The Atellica HEMA 570 and 580 hematology analyzers remove workflow barriers (Photo courtesy of Siemens)

Next-Gen Hematology Analyzers Eliminate Workflow Roadblocks and Achieve Fast Throughput

Hematology testing is a critical aspect of patient care, utilized to establish a patient's health baseline, track treatment progress, or guide timely modifications to care. However, increasing constraints... Read more

Immunology

view channel
Image: Newly observed anti-FSP antibodies have also been found to predict immune-related adverse events (Photo courtesy of Calviri)

First Blood-Based Biomarkers Test to Predict Treatment Response in Cancer Patients

Every year worldwide, lung cancer afflicts over two million individuals and almost the same number of people succumb to the disease. This malignancy leads the charts in cancer-related mortalities, with... Read more

Pathology

view channel
Image: navify digital solutions can helping labs mitigate unique quality challenges (Photo courtesy of Roche)

Cloud-Based Digital Solution Allows Labs to Track Test Samples along Entire Diagnostic Journey

Diagnosing a disease involves a meticulous procedure of monitoring a patient's diagnostic sample throughout its entire journey, which aids in clinical decision-making. However, there aren't any standardized... Read more

Technology

view channel
Electronic biosensor uses DNA aptamers for detecting biomarkers in whole blood samples (Photo courtesy of Freepik)

Electronic Biosensor Detects Biomarkers in Whole Blood Samples without Addition of Reagents

The absence of robust, reliable, and user-friendly bioanalytical tools for early and timely diagnosis of cardiovascular diseases, particularly sudden cardiac arrest, leads to preventable deaths and imposes... Read more

Industry

view channel
Image: The global hemostasis diagnostics market is expected to reach USD 3.95 billion by 2025 (Photo courtesy of Freepik)

Global Hemostasis Diagnostics Market Driven by Increase in Invasive Surgical Procedures

Injury or surgery naturally creates bleeding in living beings, which must be stopped to prevent excessive blood loss. The human body implements a protective mechanism known as hemostasis to stop excessive bleeding.... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.