We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Fast, Cheap, and Easy Testing Method Could Become a Game-Changer in Antibiotic Sensitivity Testing

By LabMedica International staff writers
Posted on 26 Apr 2023
Print article
	Image: Testing antibiotic resistance with a fast, cheap, and easy method (Photo courtesy of EPFL)
Image: Testing antibiotic resistance with a fast, cheap, and easy method (Photo courtesy of EPFL)

Antibiotic resistance, which has become a critical global public health issue, occurs when bacteria evolve to withstand the drugs designed to eliminate them. Antibiotic sensitivity testing (AST) typically involves culture or genetic methods to determine bacterial resistance. Conventional ASTs can take up to 24 hours or longer for slow-growing bacteria, a critical period in clinical settings. Although faster ASTs have been developed, they often require complex and costly equipment. Researchers have now created a rapid, affordable, and accessible method based on optical microscopy that can perform AST at the single-cell level without needing to attach or label bacteria. The technique utilizes a standard optical microscope, a camera or mobile phone, and specialized software.

The new technique developed by researchers at EPFL (Lausanne, Switzerland) and Vrije Universiteit Brussel (Brussels, Belgium) is called optical nanomotion detection (ONMD) and monitors the nanoscale vibrations of individual bacteria before and during antibiotic exposure. Monitoring is performed using a basic optical microscope and a video camera or mobile phone. ONMD observes the microscopic oscillations (nanomotion) of bacterial cells, which signify living organisms and serve as a "signature of life." Nanomotion persists as long as the organism is alive, ceasing immediately upon death. In ONMD, bacterial nanomotion is captured in a video where individual cell movements are monitored with sub-pixel resolution.

Researchers successfully applied ONMD to detect the sensitivity of various bacteria to antibiotics, determining the sensitivities of Escherichia coli, Staphylococcus aureus, Lactobacillus rhamnosus, and Mycobacterium smegmatis (a non-pathogenic bacterial model for tuberculosis) sensitivities to antibiotics like ampicillin, streptomycin, doxycycline, and vancomycin in under two hours. ONMD not only tracks bacteria's life-death transitions upon antibiotic exposure but also reveals changes in bacterial metabolism due to nutrient availability. Tests demonstrated that ONMD can quickly and simply evaluate bacterial sensitivity or resistance to antibiotics by monitoring cellular oscillations. The researchers believe that the method's simplicity and effectiveness make it a game-changer in AST, with far-reaching implications for clinical and research applications, as it can be applied to a wide variety of bacteria.

“We have developed a technique in our laboratories that allows us to obtain an antibiogram within 2-4 hours – instead of the current 24 hours for the most common germs and one month for tuberculosis,” said Dr. Sandor Kasas at EPFL.

“Our technique is not only faster but also simpler and much cheaper than all those existing now,” added Professor Ronnie Willaert at Vrije Universiteit Brussel.

Related links:
EPFL
Vrije Universiteit Brussel

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Multiplexing System
MAGPIX® System
New
Drug Detection Platform
ABSOLUDY Drug Detection Platform

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Pathology

view channel
Image: Steps and methodology of skin biopsy processing for dSTORM (Photo courtesy of Front. Mol. Neurosci. (2024); DOI: 10.3389/fnmol.2024.1431549)

Super-Resolution Imaging Detects Parkinson's 20 Years Before First Motor Symptoms Appear

Parkinson's disease is the second most common neurodegenerative disorder globally, affecting approximately 8.5 million people today. This debilitating condition is characterized by the destruction of ... Read more

Industry

view channel
Image: The Scopio X100 and X100HT full-field digital cell morphology solution (Photo courtesy of Beckman Coulter)

Beckman Coulter and Scopio Labs Add World's First Digital Bone Marrow Imaging and Analysis to Long-Term Partnership

Since 2022, Beckman Coulter (Brea, CA, USA) and Scopio Labs (Tel Aviv, Israel) have been working together to accelerate adoption of the next generation of digital cell morphology. Scopio's X100 and X100HT... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.