We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

HAMAMATSU PHOTONICS

Hamamatsu Photonics develops, manufactures and markets optical sensors, photodiodes, photo ICs, image sensors and oth... read more Featured Products: More products

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Infrared Signature for Mobile Phone Detects Malaria

By LabMedica International staff writers
Posted on 13 Dec 2022
Print article
Image: The malaria detection tool collects an infrared signature for a mobile phone to process (Photo courtesy of The University of Queensland)
Image: The malaria detection tool collects an infrared signature for a mobile phone to process (Photo courtesy of The University of Queensland)

Optical microscopy, rapid diagnostic tests (RDTs) and molecular tests are the three main diagnostic techniques currently available for malaria diagnosis. Microscopy is the traditional way of detecting malaria parasites in stained thick or thin peripheral blood films using Giemsa, Wrights or Fields stains.

RDTs detect malaria antigens in blood by targeting falciparum-specific protein such as histidine-rich protein II (HRP-II) or lactate dehydrogenase (LDH). RDTs are simple, relatively cheap and can be used in remote areas without specialized equipment or need for electricity. However, RDTs can only reliably detect 50-100 parasites/ µL. Molecular tests such as polymerase chain reaction (PCR) are currently the most accurate and the most sensitive techniques for detecting malaria in low or sub-microscopic samples, for mixed infections and for differentiating Plasmodium species.

An international team of Tropical Medicine Specialists aided by those at The University of Queensland (Brisbane, Australia) hypothesized that the presence of malaria parasites in red blood cells produce unique infrared signatures that could potentially be used for malaria detection. They used a handheld near infrared spectrometer reflective (NIRS) model to non-invasively collect spectral signatures from the right and left ears, arms and fingers of malaria positive and negative individuals living in a malaria endemic area in Brazil where both P. falciparum and P. vivax are prevalent at a 30%/70% ratio. A total of 60 patients were scanned and a total of 360 spectra were collected. The infection status and Plasmodium species type were confirmed by microscopy and standard PCR.

The scientists uses the NIRvascan NIRS model G1 (Allied Scientific Pro, Gatineau, QC . Canada). The model used is a diffuse reflectance spectrometer with wavelength ranging from 900-1700nm, a 5000:1 signal to noise ratio and an optical resolution of 10nm pixel resolution. It has an inGaAs detector (Hamamatsu Photonics, Herrsching Germany), and it weighs 136g and measures 82.2 × 63× 40 mm, it is rechargeable and can be operated by either a computer or a smart-phone via Bluetooth.

The investigators reported that results from PCR confirmed 27/60 (45%) people scanned were positive with malaria while the rest were malaria negative. Of the malaria positive individuals, 75% (N=20) and 25% (N=7), were infected with P. vivax and P. falciparum, respectively. Results from microscopy indicated that out of the 27 infected patients, 7.4% (two subjects) had extremely high parasitaemia, 18.5% (five subjects) had moderate parasitaemia, 44.4% (12 subjects) had low parasitaemia and 29.6% (eight subjects) had very low parasitaemia.

Spectra collected from the ear produced the most accurate prediction of infection in the independent subjects with an accuracy of 92% (N=24), sensitivity of 100% (N=11) and specificity of 85% (N=13). Comparatively, the accuracy, sensitivity and specificity of the spectra collected from the finger was 70% (N=24), 72 (N=11) and 69% (N=13), respectively whereas spectra of the arm resulted into a predictive accuracy of 72% (N=24), sensitivity of 59% (N=11) and specificity of 85% (N=13).

The authors concluded that their proof-of-concept study provides insights on the potential application of NIRS and machine learning techniques for rapid, non-invasive and large-scale surveillance of malaria and potentially other human pathogens. The study was published on December 7, 2022 in the journal PNAS Nexus.

Related Links:
The University of Queensland 
Allied Scientific Pro
Hamamatsu Photonics

Unit-Dose Twist-Tip BFS
New
Gold Supplier
Diagnostic Reader
Acucy System
New
SARS-CoV-2 Test
BioCode SARS-CoV-2 Assay
New
Gold Supplier
CLIA Analyzer
VIRCLIA

Print article

Channels

Clinical Chem.

view channel
Image: Electrochemical cells etched by laser on wooden tongue depressor measure glucose and nitrite in saliva (Photo courtesy of Analytical Chemistry)

Biosensor-Fabricated Wooden Tongue Depressor Measures Glucose and Nitrite in Saliva

Physicians often use tongue depressors to examine a patient's mouth and throat. However, it is hard to imagine that this simple wooden tool could actively assess a patient's health. This idea has led to... Read more

Molecular Diagnostics

view channel
Image: Medication, sepsis and inadequate blood supply to the kidneys are potential causes of AKI (Photo courtesy of Freepik)

Blood- And Urine-Based Biomarker Tests Could Identify Treatment of Acute Kidney Injury

Hospitalized patients who experience an acute kidney injury (AKI) often face unfavorable outcomes post-discharge, with limited effective treatment options. AKI can stem from various causes, such as sepsis,... Read more

Hematology

view channel
Image: The Atellica HEMA 570 and 580 hematology analyzers remove workflow barriers (Photo courtesy of Siemens)

Next-Gen Hematology Analyzers Eliminate Workflow Roadblocks and Achieve Fast Throughput

Hematology testing is a critical aspect of patient care, utilized to establish a patient's health baseline, track treatment progress, or guide timely modifications to care. However, increasing constraints... Read more

Immunology

view channel
Image: The first ever diagnostic test accurately predicts patient response to immunotherapy (Photo courtesy of Cofactor)

Immunotherapy Predictive Test Could Spare Cancer Patients from Unnecessary Chemotherapy

In recent years, there has been a significant increase in clinical trials for new cancer drugs. However, only a select group of patients have found success with these newer immunotherapies, which utilize... Read more

Pathology

view channel
Image: navify digital solutions can helping labs mitigate unique quality challenges (Photo courtesy of Roche)

Cloud-Based Digital Solution Allows Labs to Track Test Samples along Entire Diagnostic Journey

Diagnosing a disease involves a meticulous procedure of monitoring a patient's diagnostic sample throughout its entire journey, which aids in clinical decision-making. However, there aren't any standardized... Read more

Technology

view channel
Electronic biosensor uses DNA aptamers for detecting biomarkers in whole blood samples (Photo courtesy of Freepik)

Electronic Biosensor Detects Biomarkers in Whole Blood Samples without Addition of Reagents

The absence of robust, reliable, and user-friendly bioanalytical tools for early and timely diagnosis of cardiovascular diseases, particularly sudden cardiac arrest, leads to preventable deaths and imposes... Read more

Industry

view channel
Image: The global hemostasis diagnostics market is expected to reach USD 3.95 billion by 2025 (Photo courtesy of Freepik)

Global Hemostasis Diagnostics Market Driven by Increase in Invasive Surgical Procedures

Injury or surgery naturally creates bleeding in living beings, which must be stopped to prevent excessive blood loss. The human body implements a protective mechanism known as hemostasis to stop excessive bleeding.... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.