We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics - An LGC Company

Luminex Corporation

Luminex develops, manufactures, and markets biological testing technologies with applications in clinical diagnostics... read more Featured Products: More products

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Multiplex Immunoassays Enable Quantification of Malaria Antigens

By LabMedica International staff writers
Posted on 16 Jun 2022
Print article
Image: The Q-Plex Human Malaria Array (5-plex) is a robust and fully quantitative chemiluminescent assay for the concurrent surveillance of four malaria biomarkers (Photo courtesy of Quansys Biosciences)
Image: The Q-Plex Human Malaria Array (5-plex) is a robust and fully quantitative chemiluminescent assay for the concurrent surveillance of four malaria biomarkers (Photo courtesy of Quansys Biosciences)

The standard of care for malaria diagnosis is blood smear microscopy and antigen detection through rapid diagnostic test (RDT). Microscopy has limitations in terms of difficulty in identifying mixed infections and RDTs are more amenable for the diagnosis of malaria in settings with limited laboratory infrastructure.

Immunoassay platforms that simultaneously detect malaria antigens including histidine-rich protein 2 (HRP2)/HRP3 and Plasmodium lactate dehydrogenase (pLDH), are useful epidemiological tools for rapid diagnostic test evaluation. The gold standard for malaria detection is confirmation of the presence of parasite DNA or RNA in whole blood by polymerase chain reaction (PCR) testing.

A team of medical scientists led by those at the Diagnostic Group, PATH (Seattle, WA, USA) studied the comparative evaluation of two multiplex platforms in identifying Plasmodium falciparum with presence or absence of HRP2/HRP3 expression as being indicative of hrp2/hrp3 deletions and other Plasmodium species.

The team used a 77-member panel of specimens composed of the World Health Organization (WHO, Geneva, Switzerland) international Plasmodium antigen standards, cultured parasites for P. falciparum and Plasmodium knowlesi, and clinical specimens with mono-infections for P. falciparum, Plasmodium vivax, and Plasmodium malariae was generated as both whole blood and dried blood spot (DBS) specimens.

Assays for HRP2, P. falciparum–specific pLDH (PfLDH), P. vivax–specific pLDH (PvLDH), and all human Plasmodium species Pan malaria pLDH (PanLDH) on the Human Malaria Array Q-Plex (Quansys Biosciences, Logan, UT, USA) and the xMAP platforms (Luminex, Austin, TX, USA) were evaluated with these panels.

The investigators reported that the xMAP showed a higher percent positive agreement for identification of hrp2-deleted P. falciparum and Plasmodium species in whole blood and DBS than the Q-Plex. For whole blood samples, there was a highly positive correlation between the two platforms for PfLDH and PvLDH, moderate positive correlation for HRP2, and poor correlation for PanLDH. The xMAP HRP2 assay appeared to cross-react with HRP3, while the Q-Plex did not. The Q-Plex PfLDH assay cross-reacted with P. malariae, while the xMAP did not. For both platforms, P. knowlesi was detected on the PvLDH assay. The WHO international standards allowed normalization across both platforms on their HRP2, PfLDH, and PvLDH assays in whole blood and DBS.

The authors concluded that Q-Plex and xMAP show good agreement for identification of P. falciparum mutants with hrp2/hrp3 deletions, and other Plasmodium species. Quantitative results from both platforms, normalized into international units for HRP2, PfLDH, and PvLDH, showed good agreement and should allow comparison and analysis of results generated by either platform. The study was published on June 7, 2022 in the Malaria Journal.

Related Links:
Diagnostic Group, PATH 
World Health Organization
Quansys Biosciences 
Luminex 

New
Gold Supplier
Automatic Western Blot Analyzer
Tenfly Phoenix Blot Analyzer
New
5-Diff Auto Hematology Analyzer
iCell-8800
New
Automatic Fecal Analyzer
TEX760
New
Silver Supplier
SARS-CoV-2, Influenza A/B Test
REALQUALITY ABFlu-Cov-2

Print article
IIR Middle East

Channels

Technology

view channel
Image: OneDraw Blood Collection Device significantly reduces obstacles for drawing blood (Photo courtesy of Drawbridge Health)

Near Pain-Free Blood Collection Technology Enables High-Quality Testing

Blood tests help doctors diagnose diseases and conditions such as cancer, diabetes, anemia, and coronary heart disease, as well as evaluate organ functionality. They can also be used to identify disease... Read more

Industry

view channel
Image: The global infectious disease IVD market is expected to hit USD 57 billion by 2030 (Photo courtesy of Pexels)

Global Infectious Disease IVD Market Dominated by Molecular Diagnostics Technology

The global infectious disease in vitro diagnostics (IVD) market stood at USD 113.7 billion in 2021 and is expected to grow at a CAGR of -7.41% from 2022 to 2030 to hit around USD 56.89 billion by 2030,... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.