We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

CEPHEID

Develops, manufactures, and markets molecular systems and tests for institutions to perform sophisticated genetic tes... read more Featured Products: More products

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
27 Oct 2021 - 29 Oct 2021

Unique Gene Detects Mycobacterium Tuberculosis in Clinical Sputum

By LabMedica International staff writers
Posted on 13 Oct 2021
Print article
Image: The GeneXpert MTB/RIF assay for tuberculosis and rifampicin resistance was compared with unique gene to detect Mycobacterium tuberculosis (Photo courtesy of Cepheid)
Image: The GeneXpert MTB/RIF assay for tuberculosis and rifampicin resistance was compared with unique gene to detect Mycobacterium tuberculosis (Photo courtesy of Cepheid)
Tuberculosis (TB) is a common infectious disease caused by Mycobacterium tuberculosis (MTB). The main organ infected by MTB is the lung, but many other tissues or organs can be affected, such as the bone and pleura. Two million people die of MTB infection each year due to poor quality of life and lack of awareness.

An early and accurate diagnosis of TB is the critical factor for controlling and effectively treating the epidemic. Molecular detection, sputum-smear microscopy, and culture-based methods are widely used to diagnose TB in the clinic. The benefits of molecular diagnosis are rapidity, specificity, and high sensitivity.

Health Scientists at the Kunming University of Science and Technology (Kunming, China) collected a total of 232 clinical sputum samples from TB patients by physicians from January 2019 to December 2020. Sputum from all patients was subjected to the BACT MGIT-960 test (Becton-Dickinson, Brea, CA, USA) and Gene Xpert MTB/RIF assay (Cepheid, Sunnyvale, CA, USA).

A total of 173 genome sequences of Mycobacterium were downloaded and analyzed and a specific MTB gene was selected. The TB18.5 gene was considered a specific gene of the MTB strains and TB18.5 primers were designed. One-step PCR was performed in a 20 µL reaction volume, including 3 µL of DNA extracted from sputum, 10 µl of 2× TSINGKE Master Mix, and 0.3 µM each of the myco-F1 and myco-R1 primers and nested PCR was also performed. Six common clinical pathogens were used as negative controls to investigate the specificity of the TB18.5 gene and the primers.

The investigators reported that the results showed that 195 (84.05%), 182 (78.45%), and 162 (69.83%) samples were identified as MTB using nested PCR, the Gene Xpert MTB/RIF assay, and the BACTEC MGIT-960 CULTURE test, respectively. Although the nested PCR-positive ratio was the highest among the three methods, no statistical difference was identified between results of nested PCR and Gene Xpert MTB/RIF assay. However, there were significant difference between results of BACTEC MGIT-960 CULTURE test and nested PCR or Gene Xpert MTB/RIF assay.

The authors concluded that the TB18.5 gene, which was identified as a unique gene in MTB strains, was used to evaluate MTB infections. The optimized nested PCR/nested qRT-PCR method was established to detect MTB in clinical sputum samples, which showed higher positive ratio than Xpert MTB/RIF assay and the BACTEC MGIT-960 CULTURE test. Therefore, it is benefit for TB patients to obtain early and sensitively diagnose and treatment by using this nest-PCR method. The study was published on September 30, 2021 in the Journal of Clinical Laboratory Analysis.

Related Links:
Kunming University of Science and Technology
Becton-Dickinson
Cepheid


New
Gold Supplier
Lactate Dehydrogenase (LDH) Assay
LDH 21 FS
New
Gold Supplier
Fully Automated Batch Immunoanalyzer
Evidence+
New
Bulk Sorter
BL 1200 SORT CONNECT
New
SARS-CoV-2 Antigen Immunofluorescence System
Watmind SARS-CoV-2 Antigen Immunofluorescence System

Print article

Channels

Molecular Diagnostics

view channel
Image: A cancer cell during cell division (Photo courtesy of [U.S.] National Institutes of Health)

New Method Promises Rapid Isolation of Biomarker-Rich Extracellular Vesicles

A new method for isolating and analyzing cancer biomarkers from extracellular vesicles present in biological fluids is based on a novel magnetic particle based liquid biopsy chip. Extracellular vesicles... Read more

Technology

view channel
Image: Non-Invasive Nasal Swab Test Leverages Advanced Genomic Technology to Detect Lung Cancer Risk (Photo courtesy of Veracyte, Inc.)

Non-Invasive Nasal Swab Test Leverages Advanced Genomic Technology to Detect Lung Cancer Risk

A novel, non-invasive nasal swab test could support more timely and accurate lung nodule diagnosis. Veracyte, Inc. (South San Francisco, CA, USA) has announced that new expanded clinical validation data... Read more

Industry

view channel
Image: VSE Cat. No. 84800 with optional mobile table and phenolic work surface (Photo courtesy of HEMCO Corporation)

Hemco Offers VSE Balance Enclosure for Critical Procedures Involving Powders and Liquids

HEMCO Corporation (Independence, MO, USA) is offering its Vented Safety Enclosure (VSE) in 24-, 36- and 48-inch widths to accommodate an analytical balance and other small-scale lab processes.... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.