We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics


Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Mycobacterium Infection Found in Gastric Patients’ Stomachs

By LabMedica International staff writers
Posted on 26 Nov 2019
Print article
Image: Growth characteristics of rough and smooth phenotypes of Mycobacterium abscessus on 7H11 agar cultured at 37 °C: representative single rough (left) and smooth (right) colonies (Photo courtesy of Hannover Medical School)
Image: Growth characteristics of rough and smooth phenotypes of Mycobacterium abscessus on 7H11 agar cultured at 37 °C: representative single rough (left) and smooth (right) colonies (Photo courtesy of Hannover Medical School)
Development of gastric diseases such as gastritis, peptic ulcer and gastric cancer is often associated with several biotic and abiotic factors. Helicobacter pylori infection is such a well-known biotic factor. However, not all H. pylori-infected individuals develop gastric diseases and not all individuals with gastric diseases are infected with H. pylori.

H. pylori is not the only bacterium that can colonize human stomach. Culture independent metagenomic sequence analyses have shown that human stomach carries a unique microbiota. The dominant phyla that are present in human stomach are Proteobacteria, Firmicutes, Actinobacteria and Fusobacterium. Interestingly, however, most of these bacteria cannot be cultured using traditional techniques.

Microbiologists at the Rajiv Gandhi Centre for Biotechnology (Thiruvananthapuram, India) recruited patients aged between 20 and 70 with various gastric and esophageal symptoms ranging from mild dyspepsia, gastro-esophageal reflux disorder to severe gastric diseases like gastric cancer and who were recommended to have upper gastrointestinal endoscopy. Three gastric biopsy specimens were collected from each patient for this study. The aim of this study was to isolate prevalent gastric bacteria under microaerobic condition and identify them by 16S rRNA gene sequence analysis.

The team employed various technologies including gastric bacteria culture, bacterial DNA isolation, extraction of intracellular bacterial DNA from biopsy tissues, molecular characterization of the bacteria isolated from stomach. The purified DNA fragments were sequenced by a 3730XL DNA analyzer (Thermo Fisher Scientific, Waltham, Massachusetts, USA). The team also performed Hematoxylin and Eosin (H&E) and Ziehl-Neelsen Acid-fast staining on tissue biopsies, and immunohistochemistry.

Analysis of gastric biopsies showed infection of Mycobacterium abscessus (phylum Actinobacteria) to be highly prevalent in the stomachs of subjects included. The data showed that of 129 (67 male and 62 female) patients with gastric symptoms, 96 (51 male and 45 female) showed the presence of M. abscessus in stomach tissues. Infection of M. abscessus in gastric epithelium was further confirmed by imaging with acid fast staining, immunohistochemistry and immunofluorescence. Surprisingly, the subjects studied, the prevalence of M. abscessus infection in stomach is even higher than the prevalence of H. pylori infection.

The authors concluded that their study on 129 individuals with gastric diseases shows that the prevalence of gastric M. abscessus is higher in the local population as compared to the prevalence of H. pylori. The route of transmission is not known at present, but water could be a source. Significance of this infection is also presently unknown, but it may have a significant role in the formation or progression of gastric disease. The study was published on November 4, 2019 in the journal PLOS Neglected Tropical Diseases.

Related Links:
Rajiv Gandhi Centre for Biotechnology
Thermo Fisher Scientific

Print article



view channel
Image: An enzyme-linked immunosorbent assay for mannose-binding lectin found that this molecule is associated with coagulopathy in severe COVID-19 patients (Photo courtesy of Getty Images).

Mannose-Binding Lectin Associated with Coagulopathy in Severe COVID-19

The ongoing COVID-19 pandemic has caused significant morbidity and mortality worldwide, as well as profound effects on society. COVID-19 patients have an increased risk of thromboembolic (TE) complications,... Read more

Industry News

view channel

2020 AACC Annual Scientific Meeting & Clinical Lab Expo to Be an All Virtual Event Due to Coronavirus Pandemic

The American Association for Clinical Chemistry (AACC Washington, DC, USA) has decided to hold the 2020 AACC Annual Scientific Meeting & Clinical Lab Expo as a virtual event, rather than as a live... Read more
Copyright © 2000-2020 Globetech Media. All rights reserved.